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ON THE HALL ALGEBRA OF AN ELLIPTIC CURVE, I
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Forests may fall,
But not the dusk they shield.

H.P. Lovecraft
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INTRODUCTION

. Among the oldest and still most fundamental objects in representation theory and
combinatorics are the rings of symmetric polynomials

Λ+ = C[x1, x2, . . .]
S∞ := Lim

←−
C[x1, . . . , xr]

Sr ,

and symmetric Laurent polynomials

Λ = C[x±1
1 , x±1

2 , . . .]S∞ .

These rings admit numerous algebraic and geometric realizations, but one of the
historically first constructions, dating to the work of Steinitz in 1900 completed
later by Hall, was given in terms of what is now called the classical Hall algebra H

(see [Ma], Chapter II ). This algebra has a basis consisting of isomorphism classes
of abelian q-groups, where q is a fixed prime power, and the structure constants
are defined by counting extensions between such abelian groups. In fact, these
structure constants are polynomials in q, and we can therefore consider H as a
C[q±1]-algebra. A theorem of Steinitz and Hall provides an isomorphism H ≃ Λ+

q =

C[q±1][x1, x2, . . .]
S∞ . Under this isomorphism, the natural basis of H (resp. the

natural scalar product) is mapped to the basis of Hall-Littlewood polynomials (resp.
the Hall-Littlewood scalar product). In addition, Zelevinsky [Z] endowed Λ+

q with a

structure of a cocommutative Hopf algebra and the whole algebra Λq = Λ⊗C[q±1]

* Mathematisches Institut, Friedrich-Wilhelms-Universität Bonn, Endenicher Allee 60, D-53115,
Bonn, Germany, e-mail: burban@math.uni-bonn.de
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can be recovered from Λ+
q by the Drinfeld double construction. This Hopf algebra

structure is also intrinsically defined by means of the Hall algebra.

One aim of the present work is to initiate a similar approach for the rings of
diagonal symmetric polynomials

ΛΛ++ = C[x1, x2, . . . , y1, y2, . . .]
S∞ , ΛΛ+ = C[x±1

1 , x±1
2 , . . . , y1, y2, . . .]

S∞

and
ΛΛ = C[x±1

1 , x±1
2 , . . . , y±1

1 , y±1
2 , . . .]S∞ ,

with S∞ acting simultaneously on the variables xi and yi, based on the category
of coherent sheaves on an elliptic curve. These rings have recently attracted a lot
of attention due to its close relations to Macdonald’s polynomials and double affine
Hecke algebras.

To any abelian category A defined over a finite field k = Fq and satisfying
certain finiteness conditions one can attach an associative algebra HA defined over
the field Q(v), v =

√
q−1 called the Hall algebra of the category A. As a Q(v)–

vector space HA has a basis parameterized by isomorphism classes of objects of
A and its structure constants are expressed via the number of extensions between
the objects of A. The interest in this construction grew considerably after Ringel
studied in [R1] the Hall algebra of the category of representations of an arbitrary

quiver ~Q and showed that it contains the positive part U+
v (g) of the quantized

enveloping algebra of the Kac-Moody algebra g associated to ~Q.

In a similar direction, Kapranov considered in [K1] a natural subalgebra H
sph
X

of the Hall algebra HX of the category of coherent sheaves Coh(X) on a smooth

projective curve X defined over a finite field k. This spherical Hall algebra H
sph
X

plays an important role in the Langlands program for the function field ofX because
it can be interpreted as the algebra of (everywhere unramified, principal) Eisenstein
series for GL(n) for all n, with the product coming from the parabolic induction

functor. In the case X = P1 the algebra H
sph
X is isomorphic to the positive part

of the quantum loop algebra Uv(Lsl2) (see [K1] and also [BK]). In higher genus,
Kapranov defined a surjective map from another algebra U+

X (defined by generators

and relations) to H
sph
X . Unfortunately, this map has a nontrivial kernel, and it is

not known how to describe it explicitly.

In this paper, we study in details the Hall algebra HX of an elliptic curve X
defined over k and a certain subalgebra U+

X of HX which turns out to coincide

with the spherical Hall algebra H
sph
X of Kapranov. We show that U+

X is naturally
a deformation of the ring of diagonal symmetric polynomials

ΛΛ+ := C[x±1
1 , x±1

2 , . . . , y1, y2, . . .]
S∞ .

In Theorem 5.4 we provide an explicit description of the bialgebra U+
X by gener-

ators and relations. It is neither commutative, nor cocommutative. In order to ob-
tain a more symmetric and canonical object, we consider the Drinfeld double UX of
U+

X , which is now a deformation of the ring ΛΛ = C[x±1
1 , x±1

2 , . . . , y±1
1 , y±1

2 , . . .]S∞ .
We prove (Theorem 3.8) that the group of exact auto-equivalences of the derived
category Db

(
Coh(X)

)
naturally acts on UX by algebra automorphisms, yielding

an action of SL(2,Z) on UX . In Section 5 we construct a natural “monomial”
basis of U+

X (resp. of UX) indexed by the set of finite convex paths in the re-

gion (Z2)+ =
{
(p, q) ∈ Z2 | p ≥ 1 or p = 0, q ≥ 0

}
(resp. in Z2). This basis is

equivariant with respect to the SL(2,Z)-action.

We show that the structure constants of UX are Laurent polynomials in σ1/2

and σ̄1/2, where σ, σ̄ are the Frobenius eigenvalues on the l-adic cohomology group
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H1(X
k
,Ql) (observe that v = (σσ̄)−1/2). This allows us to consider UX as a

C
[
σ±1/2, σ̄±1/2

]
-algebra. More precisely, we introduce a generic version ER of the

Hall algebras U+
X , which is defined over the ring R = C

[
σ±1/2, σ̄±1/2

]
, where σ, σ̄

are now formal parameters and which specializes to all the algebras UX . Moreover,
for the values σ = σ̄ = 1 one gets the ring

(ER)|σ=σ̄=1 ≃ ΛΛ = C
[
x±1

1 , x±1
2 , . . . , y±1

1 , y±1
2 , . . .

]S∞

of diagonal symmetric polynomials and ER is a flat deformation of ΛΛ. We show
that as in the case of UX , the algebra ER has a monomial basis, a triangular
decomposition, and carries an action of SL(2,Z) by automorphisms.

A very interesting two-parameter deformation of the ring

ΛΛn = C
[
x±1

1 , . . . , x±1
n , y±1

1 , . . . , y±1
n

]Sn

is provided by the spherical double affine Hecke algebra (DAHA) SḦn of type gl(n)
(see [Ch]). In a joint work [SV1] of the second-named author with E. Vasserot it

is shown that there are surjective homomorphisms ER ։ SḦn for any positive
integer n, so that ER may be thought of as the “stable limit” SḦ∞ of the type
A spherical DAHA. In the companion paper [S3], we shall use a geometric version
of the Hall algebra to construct certain “canonical bases” of ER, which may be
thought of as some ”double” analogues of Kazhdan-Lusztig polynomials of type A.

The elliptic Hall algebra ER has recently found applications in the geometric
construction of Macdonald polynomials via Eisenstein series (see [SV1]), and in the
computation of convolution algebras in the equivariant K-theory of Hilbert schemes
of A2 and of the commuting variety (see [SV2]).

Let us now briefly describe the content of this paper. After recalling Atiyah’s
classification of coherent sheaves on an elliptic curve X and the structure of the
group of exact auto-equivalences of the derived category Db

(
Coh(X)

)
in Section 1,

we introduce, following Ringel and Green, the Hall bialgebra HX of the category
Coh(X) in Section 2. In Section 3 we deal with the Drinfeld double DHX of HX and
constructs an embedding of the group of exact auto-equivalences of Db

(
Coh(X)

)

into Aut(DHX). The subalgebra UX of DHX we are interested in is defined in
Section 4. The main theorem of this article, describing UX by generators and
relations is proven in Section 5. Section 6 contains various important properties
of UX (integral form, central extension, etc). In the last Section 7 sum up main
properties of the algebra UX proven in this article. Appendix A is devoted a
discussion of Fourier-Mukai transforms for elliptic curves defined over finite fields,
whereas in Appendix B we prove some basic properties of the Drinfeld double of a
topological bialgebra.

1. Coherent sheaves on elliptic curves

1.1. Let k be any field. Throughout the paper X denotes a smooth elliptic curve
defined over k, that is, X is a smooth projective curve of genus one having a
rational point. Note, that by Weil’s inequality in the case of a finite field k = Fq

we have
∣∣|X(k)| − (q + 1)

∣∣ ≤ 2
√
q, hence any smooth projective curve of genus

one has such a point. We denote by Coh(X) its category of coherent sheaves. Let
us first outline, following Atiyah, the classification of coherent sheaves on elliptic
curves (in [A] it is assumed that k is algebraically closed, but the proof can be
applied for an arbitrary field k). Recall that the slope of a sheaf F ∈ Coh(X) is
µ(F) = deg(F)/ rank(F), and that a sheaf F is semi-stable (resp. stable) if for any
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subsheaf G ⊂ F we have µ(G) ≤ µ(F) (resp. µ(G) < µ(F)). The full subcategory
Cµ of Coh(X) consisting of all semi-stable sheaves of a fixed slope µ ∈ Q ∪ {∞}
is abelian, artinian and closed under extensions. Moreover, if F ,G are semi-stable
with µ(F) < µ(G) then Hom(G,F) = Ext(F ,G) = 0. Any sheaf F possesses a
unique filtration (the Harder-Narasimhan filtration, or HN filtration)

0 = Fr+1 ⊂ Fr ⊂ · · · ⊂ F1 = F
for which F i/F i+1 is semi-stable of slope, say µi, and µ1 < · · · < µr. Observe that
C∞ is just the category of torsion sheaves, and hence is equivalent to the product
category

∏
x T orx, where x runs through the set of closed points of X and T orx

denotes the category of torsion sheaves supported at x. Since T orx is equivalent to
the category of finite length modules over the local ring Rx of the point x, there is
a unique simple sheaf Ox in T orx.

Theorem 1.1 ([A]). The following holds :
i) the HN filtration of any coherent sheaf splits (non-canonically). In particular,

any indecomposable coherent sheaf is semi-stable,
ii) the set of stable sheaves of slope µ is the set of simple objects of Cµ,

iii) there are canonical exact equivalences of abelian categories ǫν,µ : Cµ
∼−→ Cν

for any µ, ν ∈ Q ∪ {∞}.

The Grothendieck group K0

(
Coh(X)

)
of Coh(X) is equipped with the Euler

bilinear form 〈 , 〉 : K0

(
Coh(X)

)
⊗K0

(
Coh(X)

)
−→ Z defined by the formula

F ⊗ G 7→ dim Hom(F ,G) − dim Ext(F ,G).

There is a natural map K0

(
Coh(X)

)
−→ K ′0

(
Coh(X)

)
:= Z2, given by

F 7→
(
rank(F), deg(F)

)

whose kernel coincides with the radical of the form 〈 , 〉. As we shall be mainly
interested in the class of a sheaf in the numerical K–group K ′0

(
Coh(X)

)
, we also

denote by F the pair
(
rank(F), deg(F)

)
. By the Riemann-Roch formula one has

〈
(r1, d1), (r2, d2)

〉
= r1d2 − r2d1.

In particular, the Euler form is skew-symmetric in our case.

1.2. Let Db
(
Coh(X)

)
stand for the bounded derived category of coherent sheaves

on X . As Coh(X) has global dimension one, the structure of Db
(
Coh(X)

)
is very

simple to describe: any object of this category is isomorphic to its cohomology,
i.e. F• ≃ ⊕

nH
n(F•)[−n].

We also consider the so-called root category RX = Db
(
Coh(X)

)
/[2], where [1]

is the shift functor. This category can be described as follows
(1) Ob(RX) =

{
F±|F ∈ Ob(CohX)

}

(2) HomRX
(F±,G±) = HomX(F ,G) and HomRX

(F±,G∓) = Ext1X(F ,G).

The category RX is triangulated and there is a canonical exact functor

Ψ : Db
(
Coh(X)

)
−→ RX

inducing a group isomorphismK0(X) −→ K0(RX). Since the shift [2] preserves the
Euler form 〈 , 〉, we can define a morphism K0(RX) −→ K ′0

(
Coh(X)

)
, mapping

F± to the class ±F . Moreover, one can view the root category RX as the category
of two-periodic complexes with the functor Ψ being a Galois covering functor in
the sense of Gabriel, see [PX] for further details.

Next, let us consider auto-equivalences of triangulated categories Db
(
Coh(X)

)

and RX . Let E be a spherical object in the derived category Db
(
Coh(X)

)
, i.e. an
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object satisfying Hom(E , E) = Hom
(
E , E [1]

)
= k. For example the structure sheaf

the curve O or the structure sheaf of a k-rational point Ox0 . Seidel and Thomas
considered in [ST] the functor

TE : Db(CohX) −→ Db(CohX)

defined by TE(F) = cone
(
RHom(E ,F)

k

⊗ E ev−→ F
)
. The functor TE is exact and

if coherent sheaves E and F satisfy the condition Ext1(E ,F) = 0, then TE(F) is
quasi-isomorphic to the complex

(
Hom(E ,F)

k

⊗ E ev−→ F
)

=
(
En ev−→ F

)
,

where n = dimHom(E ,F). On the level of K0

(
Coh(X)

)
the functor TE induces

the group homomorphism tE : K0

(
Coh(X)

)
−→ K0

(
Coh(X)

)
, given by

γ 7→ γ − 〈E , γ〉E ,

where 〈 , 〉 denotes the Euler form on K0

(
Coh(X)

)
.

Let x0 be a rational point of X . In the basis
{
O,Ox0

}
of the numerical K-

group K ′0
(
Coh(X)

)
, the twist functors TO, TOx0

and the shift [1] induce linear
transformations given by the matrices

tO =

(
1 −1
0 1

)
, tOx0

=

(
1 0
1 1

)
, t[1] =

(
−1 0
0 −1

)
.

Observe that for any k-rational point x0 the equivalence TOx0
preserves Coh(X)

and is simply given by F 7→ F ⊗O(x0), see [ST, formula (3.11)].
Due to [ST, Proposition 2.10] the functor TE is an equivalence of categories for

any spherical object E and by [ST, Lemma 3.2] it is isomorphic to a Fourier-Mukai
transform with the kernel cone(E∨⊠E −→ O∆) ∈ Db

(
Coh(X×X)

)
. Moreover, by

[ST, Proposition 2.13] we have the following braid group relation:

TOx0
TOTOx0

∼= TOTOx0
TO.

Proposition 1.2 (see [Mu, ST]). Let Φ := TOx0
TOTOx0

, then Φ2 ∼= i∗[1], where
i is an involution of X preserving x0. Moreover, for the duality functor D =
RHom(−,O) we have an isomorphism

D ◦ Φ ∼= i∗ ◦ [1] ◦ Φ ◦D.

Proof. The braid group relation between TO and TOx0
was proven in [ST] without

any restrictions on the base field. However, in the proof of two other isomorphisms,
given in [Mu] the assumption for k to be algebraically closed was used. We refer
to Appendix A for a proof in the case of an arbitrary field.

From the above relations one deduces that the group generated by TO, TOx0

and [1] is the universal covering S̃L(2,Z) of SL(2,Z) given by a central extension
of SL(2,Z) by Z. Since in Aut(RX) we have [1]2 ≃ id, the action of the group〈
TO, TOx0

, [1]
〉

on the root category RX breaks up to the action of ŜL(2,Z), where

ŜL(2,Z) is a two-fold covering of SL(2,Z). That all may be summed up in the



6 IGOR BURBAN* AND OLIVIER SCHIFFMANN†

following commutative diagram:

S̃L(2,Z)

����

�

� // Aut
(
Db

(
Coh(X)

))

��
ŜL(2,Z)

�

� //

)) ))S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Aut(RX)

����
SL(2,Z) = Aut

(
K ′0(Coh(X))

)

For any ν ∈ Q ∪ {±∞} denote by Coh≤ν (resp. Coh>ν) the full subcategory
of Coh(X) consisting of sheaves all of whose indecomposable (= semi-stable) con-
stituents have slope at most ν (resp. strictly greater then ν). Next, let Cohν(X) be
the full subcategory of Db

(
Coh(X)

)
whose objects consist of direct sums F ⊕ G[1]

where F ∈ Coh>ν ,G ∈ Coh≤ν . This has the structure of an abelian category
as the heart of the t-structure on Db

(
Coh(X)

)
associated to the torsion pair

(Coh>ν , Coh≤ν). One can view the category Cohν(X) as a full subcategory of
the root category RX .

For a spherical sheaf E of class (r, d) ∈ K ′0
(
Coh(X)

)
and slope µ = d

r the auto-
equivalence TE establishes an equivalence between Coh(X) and Cohν(X), where

ν = −∞ if µ = ∞ and ν = µ − 1
r2 if µ 6= ∞. More generally, if γ̂ ∈ ŜL(2,Z) is a

lift of γ ∈ SL(2,Z) then γ̂ sends Coh(X) to Cohν(X) where ν = p′

q′ , and (q′, p′) =

γ(0,−1). Finally, each equivalence ǫν,µ in Atiyah’s Theorem 1.1 can be obtained
as the restriction to Cµ of one of the above auto-equivalences of Db

(
Coh(X)

)
and

RX . We can visualize the structure of the category RX by the following picture,
where Coh(X)+ = Coh(X) and Coh(X)− = Coh(X)[1].

6

rank
-

deg

�
�
�
�
�
�
F

����
G[1]
q

µ(F)

Coh(X)+Coh(X)−

µ(G)

q

γ̂−→

6

-

deg

rank
@
@
@
@
@
@
@

@
@
@
@
@
@
@

ν

Cohν(X)

Cohν(X)[1]

Coh>ν

Coh≤ν [1]

Figure 1. The root category RX and its auto-equivalences

2. Hall algebra of an elliptic curve

2.1. From now on we assume that k = Fq is a finite field, fix a square root v of q−1

and work over the quadratic field extension K = Q(
√
q) = Q(v). Note that Coh(X)

is a hereditary abelian category. Consider the free K-module HX with linear basis{
[F ]

}
where F runs through the set of isomorphism classes of objects in Coh(X).

There is a natural Z2-grading on HX given by HX [α] =
⊕
F=αK[F ]. To a triple

(F ,G,H) of coherent sheaves we associate the finite set PHF ,G of exact sequences
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0 → G → H → F → 0. Next, we set PHF ,G = #PHF ,G and FHF ,G =
PHF ,G
aFaG , where

aK = #Aut(K) for a coherent sheaf K. As in [R1] we now define an associative
product on HX by the formula

(2.1) [F ] · [G] = v−〈F ,G〉
∑

H

FHF ,G [H],

and, following [G], a coassociative coproduct

(2.2) ∆
(
[H]

)
=

∑

F ,G

v−〈F ,G〉
PHF ,G

aH
[F ] ⊗ [G].

(note that we are using the opposite of the algebra and coalgebra structures con-
sidered in [K1]). The counit ε : HX −→ K is defined as follows

ε
(
[F ]

)
=

{
1 if F ∼= 0
0 if F 6∼= 0.

Finally, the bilinear form given by

(
[F ], [G]

)
= δF ,G

1

aF

is a non-degenerate Hopf pairing on HX , i.e. we have (ab, c) =
(
a⊗ b,∆(c)

)
for any

a, b, c ∈ HX (see [G]).

2.2. The comultiplication ∆ only takes value in a certain completion of HX ⊗HX

(the sum on the right-hand side of (2.2) is infinite unless H is a torsion sheaf). Note
also that the space HX [α] is infinite dimensional for α = (r, d) ∈ Z2, r > 0.

We denote (Z2)+ =
{
(q, p) ∈ Z2 | q ≥ 1 or q = 0, p ≥ 0

}
and for a given class

α ∈ (Z2)+ define H
6≥m
X [α] = span

{
[F ]|F = α and F 6∈ Coh≥m

}
and H

≥m
X [α] =

span
{
[F ]|F = α and F ∈ Coh≥m

}
.

Lemma 2.1. For any class α ∈ (Z2)+ and any integer m the vector space H
≥m
X [α]

is finite-dimensional.

Proof. Note that for any m ∈ Z there are only finitely many elements α1, α2, . . . , αt

of (Z2)+ such that m ≤ µ(α1) < · · · < µ(αt) and α1 +α2 + · · ·+αt = α. Moreover,
it follows from the Atiyah’s classification that for any class β ∈ (Z2)+ there are
only finitely many semi-stable coherent sheaves of class β. Since any coherent sheaf
on an elliptic curve splits into a direct sum of semi-stable ones, the claim easily
follows. X

For any integer m we have a surjective linear map of vector spaces jetm :

HX [α] → H
≥m
X [α] inducing an isomorphism πm : HX [α]/H 6≥m

X [α] → H
≥m
X [α]. For

any m ≤ n the canonical embedding H
6≥m
X [α] → H

6≥n
X [α] induces a commutative

diagram

HX [α]/H 6≥n
X [α]

πn // H≥n
X [α]

HX [α]/H 6≥m
X [α]

OO

πm // H≥m
X [α]

ϕm,n

OO

Obviously,
(
H
≥n
X [α], ϕm,n

)
forms a projective system, and we can define

(2.3) ĤX [α] := lim
←−

n

(
H
≥n
X [α]

)
.
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One can view ĤX [α] as the set of infinite sums
{∑

aF [F ]|aF ∈ K,F = α
}
. For

the sake of convenience we also denote by jetn the canonical morphism ĤX [α] →
H
≥n
X [α]. By the universal property of the projective limit there is an (injective)

linear map HX [α] → ĤX [α], and since the surjection HX [α] → H
6≥n
X [α] splits,

we may consider H
6≥n
X [α] as a subspace of ĤX [α] via the inclusion H

6≥n
X [α] →

HX [α] −→ ĤX [α]. So, the projection jetn : ĤX [α] → H
≥n
X [α] is an idempotent

morphism and if we denote rn = 1 − jetn, then any element h ∈ ĤX [α] can be

written as jetn(h)+ rn(h), where jetn(h) ∈ H
≥n
X [α] and jetn

(
rn(h)

)
= 0. Using this

formalism, the space HX [α] viewed as a subset of ĤX [α] can be identified with the
set of those sequences h = (hn) for which rn(hn) = 0 for n≫ 0.

So, we define ĤX :=
⊕

α∈(Z2)+
ĤX [α]. In a similar way, for α, β ∈ (Z2)+ the

sequence of vector spaces
(
H
≥n
X [α]⊗H

≥m
X [β]

)
=

(
HX [α]/H 6≥n

X [α]⊗HX [β]/H 6≥n
X [β]

)

forms a projective system and we put

(2.4) HX [α]⊗̂HX [β] := lim
←−
n,m

(H≥n
X [α] ⊗ H

≥m
X [β]).

In this case as well HX [α]⊗̂HX [β] can be identified with the set of infinite sums{ ∑
F ,G

bF ,G[F ] ⊗ [G]|F = α,G = β, bF ,G ∈ K
}
. For γ ∈ (Z2)+ we set

(2.5) (HX⊗̂HX)[γ] :=
∏

α+β=γ

α,β∈(Z2)+

HX [α]⊗̂HX [β]

and finally

(2.6) HX⊗̂HX :=
⊕

γ∈(Z2)+

HX⊗̂HX [γ].

Proposition 2.2. In the notation as above the following properties hold

(1) ĤX and HX⊗̂HX are associative algebras;
(2) the comultiplication ∆ : HX −→ HX⊗̂HX is a ring homomorphism and ex-

tends to a map ∆ : ĤX −→ HX⊗̂HX;
(3) let ∆α,β : HX [α + β] → HX [α]⊗̂HX [β] stand for the (α, β)-component of ∆,

then ∆α,β

(
HX [α+ β]

)
⊂ HX [α] ⊗ HX [β].

Proof. Let us show that the composition map ĤX [α]⊗ ĤX [β]
m−→ ĤX [α+β] given

by the rule
(∑

aH[H]
)
⊗

(∑
bG [G]

)
7→

(∑
aHbG [H][G]

)
is well-defined. Indeed, for

a fixed coherent sheaf F of class F = α+β there are finitely many exact sequences

0 −→ G −→ F −→ H −→ 0

such that H = α and G = β. To see this, let F =
n⊕

i=1

Fi and H =
m⊕

j=1

Hj

be the splittings of F and H into a direct sum of semi-stable objects, then the
existence of an epimorphism F ։ H implies the conditions rank(H) ≤ rank(F)
and µ(Hj) ≥ min

{
µ(Fi)|1 ≤ i ≤ n

}
for all 1 ≤ j ≤ m. Hence it follows that the

degrees of all sheaves Hj are bounded below and as
m∑

j=1

deg(Hj) = deg(α), they are

also bounded above. By Atiyah’s classification, there are finitely many semi-stable
sheaves of a given class and hence there are finitely many sheaves H of class α
which are quotients of F . In the same way, there are only finitely many subsheaves
of F of class β. This means that only finitely many sheaves from HX [α] and HX [β]
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contribute to the element [F ] from ĤX [α + b], which shows that the map m is
well-defined.

In a similar fashion, one deals with HX⊗̂HX . In this case the map
∏

α1+β1=γ1

HX [α1]⊗̂HX [β1] ⊗
∏

α2+β2=γ1

HX [α2]⊗̂HX [β2]

m−→
∏

α2+β2=γ2

α1+β1=γ1

HX [α1 + α2]⊗̂HX [β1 + β2]
(2.7)

is convergent since for a given [F ]⊗ [G] ∈ HX [γ1]⊗HX [γ2] there are finitely many
surjective morphisms F ։ M and G ։ N , where M and N are coherent sheaves
satisfying M + N = γ1. The proof that ∆α,β(HX)[α + β] ⊆ HX [α] ⊗ HX [β] is
completely analogous.

To see that ∆ is a ring homomorphism, fix a pair of tuples (α, β, α′, β′) and
(γ, γ′, δ, δ′) of elements of K ′0(Coh(X)) satisfying

γ + γ′ = α, δ + δ′ = β, γ + δ = α′, γ′ + δ′ = β′

and put

cγ,δ = (m⊗m) ◦ P23 ◦ (∆γ,γ′ ⊗ ∆δ,δ′) : HX [α] ⊗ HX [β] → HX [α′] ⊗ HX [β′],

where P23 is the operator of permutation of the second and third components. For
any tuples of sheaves (F ,G,H,K) such that F = α,G = β,H = α′,K = β′ let
cγ,δ(F ,G,H,K) be the coefficient of [H] ⊗ [K] in cγ,δ([F ] ⊗ [G]). It is easy to see

that cγ,δ(F ,G,H,K) = 0 for all but finitely many tuples (γ, γ′, δ, δ′).

Lemma 2.3. [G] The map

(m ◦ ∆)α′,β′

α,β =
⊕

γ,δ

cγ,δ : HX [α] ⊗ HX [β] → HX [α′] ⊗ HX [β′].

satisfies the equality (m ◦ ∆)α′,β′

α,β = ∆α′,β′ ◦m.

Note to the proof of Lemma. As in the case of quivers, this result is equivalent to
the following formula. Let F ,G,M,N be arbitrary coherent sheaves on X . Then
the following equality of Hall numbers is true:

(2.8)
∑

H

PHM,N · PHF ,G

aH
=

∑

A,B,C,D

q−〈A,D〉
PMA,B · PNC,D · PFA,C · PGB,D

aA · aB · aC · aD
.

This formula can be proved by essentially the same computation as in [G] (a more
detailed proof in [R2], in which all arguments involving the dimension vector are
replaced by the corresponding ones involving K ′0

(
Coh(X)

)
, can be applied in our

case literally). See also [S4]. X

Observe that since the Euler form 〈 , 〉 is antisymmetric it is not necessary to
twist the multiplication in HX ⊗HX as it was done in [G]. Lemma 2.3 implies that
the linear map ∆ is a ring homomorphism. The Proposition 2.2 is proven. X

A graded algebra with a graded coproduct satisfying the properties of Proposi-
tion 2.2 will be called a topological bialgebra. The next important lemma says that
the linear maps

m : ĤX [α] ⊗ ĤX [β] −→ ĤX [α+ β], ∆α,β : ĤX [α+ β] −→ HX [α]⊗̂HX [β]

and

m : (HX [α1]⊗̂HX [β1]) ⊗ (HX [α2]⊗̂HX [β2]) −→ HX [α1 + β1]⊗̂HX [a2 + β2]
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are continuous. Recall that for an element a ∈ ĤX [α] and n ∈ Z we can write

a = jetn(a) + rn(a), where jetn(a) ∈ Ĥ
≥n
X and jetn

(
(rn(a)

)
= 0.

Lemma 2.4. For any two classes α, β ∈ (Z2)+ and any m ∈ Z there exists an-

other integer n such that for any a ∈ ĤX [α] and b ∈ Ĥ[β] we have jetm(ab) =
jetm

(
jetn(a) jetn(b)

)
. Similarly, for any pair of integers m,n there exists another

pair k, l such that for all elements f ∈ HX [α1]⊗̂HX [β1], g ∈ HX [α2]⊗̂HX [β2] we
have

jetm,n(fg) = jetm,n

(
jetk,l(f) jetk,l(g)

)
.

Finally, for any pair of integers m,n there exists k such that for and any a ∈
ĤX [α+ β] we have jetm,n

(
∆α,β(a)

)
= ∆α,β

(
jetk(a)

)
.

Proof. For any coherent sheaf H of class α+ β there are only finitely many sheaves
F of class α such that there is a surjection H ։ F . Hence, we have a finite number
of exact sequences 0 −→ G −→ H −→ F −→ 0 with F = α and G = β. Since the

vector space H
≥m
X [α+ β] is finite-dimensional, we see that there exists n such that

rn(a) and rn(b) do not contribute to jetm(ab). The proof of two other statements
is completely analogous. X

Later, we shall need the following property of the Hopf pairing in HX .

Lemma 2.5. Let
∑
x′i ⊗ x′′i ∈ HX⊗̂HX [γ] and y ∈ HX [γ] and suppose that∑

(x′ix
′′
i , y) <∞. Then

∑

i

(x′ix
′′
i , y) =

∑

i,j

(x′i, y
(1)
j )(x′′i , y

(2)
j )

where
∑
j

y
(1)
j ⊗ y

(2)
j = ∆(y).

2.4. There exists a natural “PBW-type” decomposition for HX . For any µ ∈
Q∪{∞} we consider the subspace H

(µ)
X ⊂ HX linearly spanned by classes

{
[F ] | F ∈

Cµ

}
. Since the category Cµ is stable under extensions, H

(µ)
X is a subalgebra of HX

(but not a subbialgebra !). The exact equivalence ǫµ1,µ2 defined in Theorem 1.1

gives rise to an algebra isomorphism ǫµ1,µ2 : H
(µ2)
X

∼→ H
(µ1)
X . Let ~⊗

µ
H

(µ)
X stand

for the (restricted) tensor product of spaces H
(µ)
X with µ ∈ Q ∪ {∞}, ordered from

left to right in increasing order, i.e. for the vector space spanned by elements of the

form aµ1 ⊗ · · · ⊗ aµr
with aµi

∈ H
(µi)
X and µ1 < · · · < µr.

Lemma 2.6. The multiplication map m : ~⊗
µ

H
(µ)
X → HX is an isomorphism.

Proof. As the spaces Ext(F ,G) vanish for F ∈ Cµ, Gν ∈ Cν and µ < ν, we have, up
to a power of v, [F1] · [F2] · · · [Fr] = [F1 ⊕ · · · ⊕ Fr] if Fi ∈ Cµi

and µ1 < . . . < µr.
Any sheaf can be decomposed into a direct sum of semi-stable summands, and these
are determined up to isomorphism. The statement easily follows. X

Let C[µ1, µ2] be the full subcategory of sheaves whose HN decomposition only
contains slopes µ ∈ [µ1, µ2]. This category is exact and in particular stable under
extensions. Moreover, we have the following remark.

Remark 2.7. For any µ1 ≤ µ2 the Hall algebra of the exact category C[µ1, µ2] is

a subalgebra of HX , isomorphic to ~⊗
µ1≤µ≤µ2

H
(µ)
X .

We conclude this section by the following proposition.
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Proposition 2.8. Consider the algebra

T = K〈X,Y ±〉/(Y ±Y ∓ = 1, XY ± = v±2Y ±X).

Then there exists a K–linear algebra homomorphism χ : HX → T , called Reineke’s
character, given by the formula

χ
(
[F ]

)
= q−αβX

αY β

aF
,

where (α, β) =
(
rank(F), deg(F)

)
∈ Z2.

Proof. Let Γ ⊂ K ′0
(
Coh(X)

)
be the semi-group generated by the images of classes

of coherent sheaves on X . Following Reineke [Re], consider the associative algebra

K
(
Γ, 〈 , 〉

)
=

{∑

γ∈Γ

aγt
γ |aγ ∈ K

}

where the multiplication is given by the rule tαtβ = v〈α,β〉tα+β . Let X = tO and

Y ± = t±Ox0 . Then we have: Y ±Y ∓ = 1 and tO+Ox0 = vY X = v−1XY, hence
K

(
Γ, 〈 , 〉

) ∼= T . Finally, by [Re, Lemma 6.1] the linear map χ : HX → T mapping

[F ] to tF
aF = q−αβXαY β

aF is an algebra homomorphism. X

3. Drinfeld double of HX

3.1. As in the case of quivers, it is natural to consider the Drinfeld double of the
bialgebra HX . This is what we do in this Section.

Lemma 3.1. HX is isomorphic to the K-algebra generated by the collection of
elements {xF |F is semi-stable } subject to the set of relations

(3.1) xF · xG = v−〈F ,G〉
∑

H

FHF ,GxH, ∀ F ,G semi-stable

where by definition xH = v
P

i<j
〈Hi,Hj〉xH1 · · ·xHr

if H = H1 ⊕ · · ·⊕Hr with all Hi

being semi-stable and µ(H1) < · · · < µ(Hr).

Proof. Let G be the algebra defined above. By construction, there is a morphism
φ : G → HX , which is surjective by virtue of Lemma 2.6 (we have φ(xH) = [H]).
Let G′ ⊂ G denote the linear span of elements xH for H ∈ Coh(X). It is clear
that φ restricts to an isomorphism of vector spaces between G′ and HX , hence it
is enough to show that G = G′.

If F = H1 ⊕ · · · ⊕ Hr is a decomposition of a sheaf F into a direct sum of
semi-stable objects with µ(H1) < · · · < µ(Hr), we denote HN(F) = (H1, . . . ,Hr)
and call this vector the HN-type of F . One can introduce an order on the set of
HN types as follows :

(
(r1, d1), . . . , (rs, ds)

)
�

(
(r′1, d

′
1), . . . , (r

′
t, d
′
t)

)
if there exists

l such that (rs−i, ds−i) = (r′t−i, d
′
t−i) for i < l while

ds−l

rs−l
>

d′
t−l

r′
t−l

or
ds−l

rs−l
=

d′
t−l

r′
t−l

and

ds−l > d′t−l.

Fix α ∈ K ′0
(
Coh(X)

)
. We shall prove that any monomial xF1 · · ·xFr

of weight α
belongs to G′. For this, we argue successively by induction on the HN type HN(F)
of the sheaf F = F1 ⊕ · · · ⊕ Fr and then on the number nF of inversions in the

sequence
(
µ(F1), . . . , µ(Fr)

)
. Note that if HN(F) is maximal, i.e. if µ(F1) = · · · =

µ(Fr) = ν then xF1 · · ·xFr
∈ ⊕

H∈Cν
KxH ⊂ G′; on the other hand, if nF = 0

then µ(F1) ≤ · · · ≤ µ(Fr) and xF1 · · ·xFr
∈ G′ by definition. So let xF1 · · ·xFr

be a monomial of weight α and assume that xG1 · · ·xGs
belongs to G′ whenever
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HN(G) ≻ HN(F) or HN(G) = HN(F) and nG < nF . If nF = 0 then we are
done, so we may assume that µ(Fi) > µ(Fi+1) for some i. By Remark 2.7, we have

xFi
· xFi+1 ∈ KxFi+1 · xFi

⊕
⊕

H∈C[µ(Fi+1),µ(Fi)]
H6=Fi⊕Fi+1

KxH.

Now observe that the number of inversions of xF1 · · ·xFi+1 · xFi
· · ·xFr

is one less
than nF , while the HN-type the sheaf F1⊕· · ·⊕Fi−1⊕H⊕Fi+2 · · ·⊕Fr is strictly

greater than HN(F) as soon as H ∈ C
[
µ(Fi+1), µ(Fi)

]
is of class Fi ⊕Fi+1 and

H 6= Fi⊕Fi+1 . We deduce using the induction hypothesis that xF1 · · ·xFr
belongs

to G′, as desired. X

. Let DHX be the Drinfeld double of the topological bialgebra HX with respect to
the Hopf pairing ( , ). Recall (see e.g. [X1]) that this is an algebra generated by
two copies of HX , which we denote by H+

X and H−X to avoid confusion, subject to

the following set of relations for any pair g ∈ H+
X and h ∈ H−X :

(R(g, h))
∑

i,j

h
(1)−
i g

(2)+
j

(
h

(2)
i , g

(1)
j

)
=

∑

i,j

g
(1)+
j h

(2)−
i

(
h

(1)
i , g

(2)
j

)

(we use here the usual Sweedler notation ∆(x±) =
∑

i x
(1)±
i ⊗ x

(2)±
i ). Observe

that although the coproduct takes value in a completion of HX ⊗HX , the relation(
R(g, h)

)
contains only finitely many terms. Indeed it is enough to consider the

case g = [G], h = [H], and then h
(2)
i involves only sheaves which are subsheaves of

H, while g
(1)
j involves only sheaves which are quotients of G. As Hom(G,H) is a

finite set, there are only finitely many sheaves which are both quotients of G and

subsheaves of H, hence the scalar product (h
(2)
i , g

(1)
j ) vanishes for almost all values

of (i, j). The same holds for the right-hand side of
(
R(g, h)

)
. If h ∈ HX then we

write h+, h− for the corresponding elements in H+
X and H−X respectively.

Proposition 3.2. The algebra DHX is isomorphic to the K-algebra generated by
two copies H+

X ,H
−
X of the Hall algebra HX subject to the set of relations

(3.2) R
(
[G]+, [H]−

)
for any semi-stable G,H ∈ Coh(X).

Proof. We have to show that the set of relations (3.2) for semistable a = [G]+, b =
[H]− implies the set of relations R(a, b) for arbitrary a, b. By bilinearity of the
relations R(a, b) it is enough to prove this in the case a = [F ]+, b = [K]− for some
(arbitrary) sheaves F ,K.

Lemma 3.3. Let a, b ∈ H+
X , c, d ∈ H−X . The relation R(ab, c) is implied by the

collection of all relations R(a, c
(1)
k ) and R(b, c

(2)
k ) for all k ≥ 1. Similarly, R(a, cd)

follows from the collection of relations R(a
(1)
k , c) and R(a

(2)
k , d).

We refer to Appendix B for a proof of this lemma.

Now, let us consider the algebra A generated by H+
X and H−X modulo relations

(3.2). For any coherent sheaf F there exist semi-stable sheaves G1, . . . ,Gr such

that [F ] = v
P

i<j
〈Gi,Gj〉[G1] · · · [Gr ]. Thus, in view of the above Lemma 3.3, it is

enough to prove that R
(
[G], [K]

)
holds for semi-stable G and arbitrary K. We shall

prove this by induction on the rank r of K. As any torsion sheaf is semi-stable,
the statement is clear for r = 0. So let us assume that R

(
[G], [K′]

)
holds for all

semi-stable G and arbitrary K′ of rank less than r, and let K be a sheaf of rank r.
If K is semi-stable then there is nothing to prove, so we may assume that K splits
into a non-trivial direct sum of semi-stable objects K1 ⊕ · · · ⊕ Kl. Assume first
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that rank(Ki) < r for all i. Then [K] = v
P

i<j
〈Ki,Kj〉[K1] · · · [Kl], and by Lemma 3.3

R
(
[G], [K]

)
is a consequence of the set of relations R

(
[G]

(i)
j , [Ki]

)
. These hold in A

by the induction hypothesis since rank(Ki) < r. The last case to consider is that of
a sum K = I ⊕ T where I is a semi-stable vector bundle and T is a torsion sheaf.
As above, R

(
[G], [K]

)
is implied by the relations R

(
[G]

(1)
i , [I]

)
and R

(
[G]

(2)
j , [T ]

)
.

The second set of relations is satisfied by the induction hypothesis. For the first

set, let us again decompose [G]
(1)
i = vdi [V1] · · · [Vt] for some semi-stable sheaves Vj .

As before, it is enough to see that R
(
[Vj ], [I]

(j)
k

)
holds for all j, k. But as I is

a vector bundle, any sheaf appearing in [I]
(j)
k is either semi-stable, or splits as a

direct sum of smaller rank sheaves. In both cases the induction hypothesis applies.
The Proposition is proved. X

Proposition 3.4. The multiplication map H+
X ⊗ H−X

m−→ DHX is a vector space
isomorphism.

Proof. This statement is classical for Hopf algebras (see [J], 3.2.4). However, in
our situation of topological bialgebras, extra care needs to be taken because the
coproduct ∆ takes values in the completion HX⊗̂HX . A proof of Proposition 3.4
is given in Appendix B. X

3.2. It is useful to view DHX as the (yet inexistent) Hall algebra of the root
category RX , where H+

X corresponds to the Hall algebra of Coh(X) and H−X cor-
responds to the Hall algebra of Coh(X)[1] (see, however [T] or [XX] for a recent
approach to Hall algebras for derived categories). For F ∈ Coh(X) we put

[
F [ǫ]

]
=

{
[F ]+ if ǫ = 0

[F ]− if ǫ = 1.

We define the set of semi-stable objects of the root category RX as
{
F [ǫ]

}
, where

F is semi-stable and ǫ ∈ Z/2Z. Observe that this set is invariant under auto-
equivalences of RX .

Corollary 3.5. The algebra DHX is generated by the set of elements [F ], where
F runs among all semi-stable objects F ∈ RX .

Proof. This is a consequence of Lemma 3.1 and Proposition 3.2. X

Similarly to the case of the usual Hall numbers, for any triple of objects F ,G,H
of the derived category Db

(
Coh(X)

)
we denote by PHF ,G the number of the distin-

guished triangles
{
G → H → F → G[1]

}
and FHF ,G =

PHF ,G
aF · aG . Next, for any four

objects M,N ,A and B of Coh(X) we denote by CM,N
A,B the number of the long

exact sequences of the form
{
0 → N → B → A → M → 0

}
.

The following result of Kapranov [K2, Lemma 2.4.3] plays a key role in our study
of the Drinfeld double DHX .

Lemma 3.6. For for any four objects M,N ,A and B of Coh(X) we have:

CM,N
A,B =

P
N [1]⊕M
B[1],A

|Ext(M,N )| .

Our next goal is to obtain an explicit form of the relations R
(
[F ]−, [G]+

)
, where F

and G are semi-stable sheaves on X .
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Proposition 3.7. Let F and G be a pair of semi-stable sheaves on an elliptic curve
X with slopes µ = µ(F) and ν = µ(G).
(1) If µ < ν then R

(
[F ]−, [G]+

)
can be rewritten as

[F ]− · [G]+ = v〈F ,G〉
∑

B,C

v−〈C,B〉 F
C[1]⊕B
F [1],G [C]+ · [B]−.

(2) If µ > ν then R
(
[F ]−, [G]+

)
reads as

[G]+ · [F ]− = v〈G,F〉
∑

A,D

v−〈D,A〉 F
D⊕A[−1]
G,F [−1] [D]− · [A]+.

(3) Finally, if µ = ν then we have
∑

A,D∈Cµ

CA,D
F ,G [A]+ · [D]− =

∑

B,C∈Cµ

CC,BG,F [C]− · [B]−.

Proof. (1) Consider the first case when µ < ν. Let

∆
(
[F ]

)
=

∑

A,B

v−〈A,B〉
PFA,B

aF
[A] ⊗ [B] and ∆

(
[G]

)
=

∑

C,D

v−〈C,D〉
PGC,D
aG

[C] ⊗ [D].

Since F and G are semi-stable and µ(F) < µ(G), we have
(
[B], [C]

)
= 0 for any

proper subobject B of F and any proper quotient object C of G. Hence, the relation
R

(
[F ]−, [G]+

)
has the following shape:

[F ]− · [G]+ =
∑

A,B,C,D

v−〈A,B〉−〈C,D〉
PFA,BP

G
C,D

aFaG

(
[A], [D]

)
[C]+ · [B]−

=
∑

B,C

v−〈F−B,B〉−〈C,G−C〉 1

aFaG

∑

A

PFA,BP
G
C,A

aF
[C]+ · [B]−.

Recall that the Euler form on Coh(X) is skew-symmetric, hence for any object I of
Coh(X) we have: 〈I, I〉 = 0. Next, note the following equality of Hall coefficients:

∑

A

PFA,BP
G
C,A

aF
= CC,BG,F .

Hence, the whole expression can be rewritten as

[F ]− · [G]+ =
∑

B,C

v−〈F ,B〉−〈C,G〉
CC,BG,F

aFaG
[C]+ · [B]−.

Since Hom(C,B) = 0 for any subobject B of F and any quotient object C of G,

Lemma 3.6 implies that CC,BG,F = v−2〈C,B〉P
C[1]⊕B
F [1],G . Hence, we obtain:

[F ]− · [G]+ =
∑

B,C

v−〈F ,B〉−〈C,G〉−2〈C,B〉 F
C[1]⊕B
F [1],G [C]+ · [B]−.

To get the claim, it remains to note that

〈F ,G〉 + 〈F ,B〉 + 〈C,G〉 + 〈C,B〉 = 〈F + C,G + B〉 = 0.

(2) In the case µ > ν, the derivation of the formula for R
(
[F ]−, [G]+

)
is similar to

the case (1) and is therefore left to the reader.

(3) Finally, consider the case µ(F) = µ = µ(G). Let sequences

0 −→ B −→ F −→ A −→ 0 and 0 −→ D −→ G −→ C −→ 0

be exact. Assume that
(
[B], [C]

)
6= 0, i.e. B ∼= C. Then B and C are necessarily

semi-stable of slope µ. Hence, A and D are semi-stable of slope µ as well. In other
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words, all four objects A,B, C and D belong to the same abelian category Cµ. The
relation R

(
[F ]−, [G]+

)
can be rewritten as follows:

∑

A,B,C,D∈Cµ

B∼=C

v−〈A,B〉−〈C,D〉
PFA,BP

G
C,D

aFaGaB
[A]+ · [D]− =

=
∑

A,B,C,D∈Cµ

A∼=D

v−〈A,B〉−〈C,D〉
PFA,BP

G
C,D

aFaGaA
[C]− · [B]+.

By Theorem 1.1, Cµ is equivalent to the category of coherent torsion sheaves on X .
Hence, the Euler form 〈 , 〉 vanishes on Cµ and we obtain the relation

∑

A,D∈Cµ

( ∑

B∈Cµ

PFA,BP
G
B,D

aB

)
[A]+ · [D]− =

∑

B,C∈Cµ

( ∑

A∈Cµ

PFA,BP
G
C,A

aA

)
[C]− · [B]+,

which is obviously equivalent to the relation (3) of Proposition 3.7. X

Theorem 3.8. Let Φ be an auto-equivalence of Db
(
Coh(X)

)
. Then the assignment

[F ] 7→ [Φ(F)], where F is a semi-stable object of the root category RX , extends to
a uniquely determined algebra automorphism of DHX .

Proof. Recall that DHX is a K-algebra generated by the symbols [F ]±, where F
is a semi-stable coherent sheaf on X subject to the relations P

(
[F ]±, [G]±

)

[F ]± · [G]± = v−〈F ,G〉
∑

H∼=H1⊕H2⊕···⊕Ht

v
P

i<j〈Hi,Hj〉 FHF ,G [H1]
± . . . [Ht]

±,

where F and G are semi-stable, µ(F) < µ(G) and H = H1 ⊕ H2 ⊕ · · · ⊕ Ht is a
splitting into a direct sum of semi-stable objects such that µ(H1) < µ(H2) < · · · <
µ(Ht); together with the relations R

(
[F ]±, [G]±

)
of Proposition 3.7. In order to

show that the group Aut
(
Db(Coh(X))

)
acts on DHX by algebra automorphisms,

it is sufficient to check that all relations P
(
[F ]±, [G]±

)
and R

(
[F ]−, [G]+

)
are pre-

served for F and G semi-stable.

Consider first the case of the relations P
(
[F ], [G]

)
. Let µ = µ(F), ν = µ(G) and Φ

be an auto-equivalence of Db
(
Coh(X)

)
.

Case 1. First assume that Φ(F) ∼= F̂ [i] and Φ(G) ∼= Ĝ[i] for some i ∈ Z. Let

µ̂ = µ(F̂) and ν̂ = µ(Ĝ). If we assume that µ > ν then it automatically follows
that µ̂ > ν̂. Moreover, Φ induces an equivalence of exact categories C[ν, µ] →
C[ν̂, µ̂]. Hence, we have an isomorphism of Hall algebras H

(
C[ν, µ]

)
→ H

(
C[ν̂, µ̂]

)

preserving all Hall constants. In other words, the relation P
(
[F ]±, [G]±

)
is mapped

to the relation P
(
[F̂ ]±, [Ĝ]±

)
.

Case 2. Assume Φ(F) ∼= F̂ [2i+ 1] and Φ(G) ∼= Ĝ[2i] for some i ∈ Z.
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6

rank
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Coh(X)Coh(X)[1]
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q

Φ(F)

XXXXG
q

�
�
�
�
q

Φ(G)

Figure 2. Relation P ([F ], [G]), where µ(F) > µ(G)

First note that there exists a slope κ, where ν ≤ κ < µ such that Φ(Cϕ) ∈
Coh(X)[2i + 1] for κ < ϕ ≤ µ and Φ(Cϕ) ∈ Coh(X)[2i] for ν ≤ ϕ ≤ κ. Next,
for any short exact sequence 0 → G → H → F → 0 we can write

H ∼=
(
H1 ⊕ · · · ⊕ Ht

)
⊕

(
Ht+1 ⊕ · · · ⊕ Hn

) ∼= H′ ⊕H′′,
where all objects Hi are semi-stable, µ(H1) < µ(H2) < · · · < µ(Ht) = κ < Ht+1 <
· · · < µ(Hn), H′ = H1 ⊕ · · · ⊕ Ht and H′′ = Ht+1 ⊕ · · · ⊕ Hn. In these notations
we have:

(3.3) [F ] ∗ [G] = v−〈F ,G〉
∑

H′,H′′

FH
′⊕H′′

F ,G v〈H
′,H′′〉[H′] ∗ [H′′].

Since Φ(F) ∼= F̂ [2i+ 1],Φ(H′′) ∼= Ĥ′′[2i + 1], whereas Φ(G) ∼= Ĝ[2i] and Φ(H′) ∼=
Ĥ′[2i], we have: 〈F ,G〉 = −〈F̂ , Ĝ〉 and 〈H′,H′′〉 = −〈Ĥ′, Ĥ′′〉. Hence, the image of
the relation (3.3) is the following equality in the Drinfeld double:

(3.4) [F̂ ]− ∗ [Ĝ]+ = v〈
bF , bG〉

∑

bH′, bH′′

v−〈
bH′, bH′′〉 F

bH′⊕ bH′′[1]
bF [1], bG

[H′]+ ∗ [H′′]−.

It remains to note that µ(F̂) < µ(Ĝ) and the equality (3.4) is nothing but the

relation of the Drinfeld double R
(
[F̂ ]−, [Ĝ]+

)
.

Case 3. In a similar way, if Φ(F) ∼= F̂ [2i] and Φ(G) ∼= Ĝ[2i− 1] for some i ∈ Z then

the relation P
(
[F ], [G]

)
is mapped to the relation R

(
[F̂ ]+, [Ĝ]−

)
.

Now we check the preservation of the relations of the Drinfeld double R
(
[F̂ ]±, [Ĝ]∓

)

for all semi-stable objects F and G.

Case 1. First assume µ(F) = µ(G) = µ. Recall that any auto-equivalence Φ ∈
Aut

(
Db(Coh(X))

)
induces an equivalence of abelian categories Cµ

∼= Cν for an
appropriate slope ν. In particular, we obtain:

Φ
(
R

(
[F ]±, [G]∓

))
= R

(
[F̂ ]±, [Ĝ]∓

)

where Φ(F) ∼= F̂ [i] and Φ(G) ∼= Ĝ[i] for an appropriate i ∈ Z.

Case 2. Assume assume µ(F) < µ(G). Then there exists an auto-equivalence Ψ

such that both complexes F̂ := Ψ
(
F [1]

)
and Ĝ := Ψ(G) belong to the heart of the

standard t-structure Coh(X). Since we have already shown that R
(
[F ]−, [G]+

)
=

Ψ
(
P ([F̂ ]+, [Ĝ]+)

)
, we have:

Φ
(
R

(
[F ]−, [G]+

))
= Φ ◦ Ψ−1

(
P ([F̂ ]+, [Ĝ]+)

)
.
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Hence, this is again a relation either of the type P
(
[F̂ ]±, [Ĝ]±

)
or of the type

R
(
[F̂ ]∓, [Ĝ]±

)
.

Case 3. The remaining case µ(F) > µ(G) is similar to the former one and is left to
the reader. Theorem 3.8 is proven. X

Corollary 3.9. The group ŜL(2,Z) acts by algebra automorphisms on DHX .

Remark 3.10. Theorem 3.8 is close in spirit to [K2] (see also [X2] and [PT]).
Recently, it has been generalized by Cramer, who proved that any derived auto-
equivalence between hereditary abelian categories gives rise to an isomorphism at
the level of Hall algebras, see [Cr].

It turns out that the Drinfeld double DHX carries one more symmetry :

Proposition 3.11. The duality functor D = RHom(−,O) induces an involutive
anti-isomorphism [F ] 7→

[
D(F)

]
of the algebra DHX satisfying the relation

D ◦ Φ = i∗ ◦ [1] ◦ Φ ◦D,
where Φ = TOTOxo

TO and i is an involution of the curve X preserving x0.

Proof. The proof of the fact that D is an anti-homomorphism of the algebra DHX

is completely analogous to the proof of the Theorem 3.8 and is therefore skipped.
The equality relating the dualizing functor and the Fourier-Mukai transform is a
corollary of the Proposition A.2. (see Appendix A). X

Remark 3.12. Since the map D sends vector bundles to vector bundles, it restricts

to an antiinvolution of the subalgebra H+,vec := ~⊗
−∞<µ<∞

H+,(µ).

4. The algebra UX

Our main object of study is a subalgebra UX of DHX , generated by certain
“averages” of semi-stable sheaves. Before defining UX and giving some of its first
properties, we state some useful results on the classical Hall algebra, associated to
the category of torsion sheaves supported at a point (or equivalently to the category
of nilpotent representations of the Jordan quiver).

4.1. We shall need the usual notions of ν-integers : if ν 6= ±1 we set

[s]ν =
νs − ν−s

ν − ν−1
.

We shall usually only use [s] := [s]v where v2 = #k
−1 is as in Section 2.1. For

a finite field l fix u ∈ C such that u2 = (#l)−1. Denote by Nl the category of
nilpotent representations over l of the quiver consisting of a single vertex and a
single loop. Then there is exactly one indecomposable object I(r) of length r for
any r ∈ N, and for a partition λ = (λ1, . . . , λs) we write Iλ = I(λ1) ⊕ · · · ⊕ I(λs).
The set {Iλ}, where λ runs among all partitions is a complete collection of non-
isomorphic objects in Nl. The structure of the Hall algebra HNl

of the category
Nl is completely described in [Ma], Chap. II, (see also [Ma] Chap. III. 3.4). The
following proposition summarizes those properties of HNl

that will be needed later
on. Let us denote by Λt Macdonald’s ring of symmetric functions, defined over
the ring Q[t±1], and by eλ (resp. pλ) the elementary (resp. power-sum) symmetric
functions.



18 IGOR BURBAN* AND OLIVIER SCHIFFMANN†

Proposition 4.1 ([Ma]). The assignment [I(1)r ] 7→ ur(r−1)er extends to a bialgebra

isomorphism Ψl : HNl

∼→ (Λt)|t=u2 . Set Fr = Ψ−1
l

(pr). Then

i) Fr =
∑
|λ|=r nu

(
l(λ) − 1

)
[Iλ], where nu(l) =

∏l
i=1(1 − u−2i),

ii) ∆(Fr) = Fr ⊗ 1 + 1 ⊗ Fr,

iii) (Fr , Fs) = δr,s
rur

u−r − ur .

Proof. Statements i), ii) and iii) may be found in [Ma], III. 7. Ex.2, I.5 Ex. 25 and
III.4 (4.11) respectively X

In particular, the scalar product ( , ) on HNl
coincides, up to a renormalization,

with the Hall-Littlewood scalar product.

4.2. Let x be a closed point of X . Since the residue field kx at the point x is of the
same characteristic as k, there is an equivalence of categories Nkx

∼→ T orx which

provides us with an isomorphism Ψkx
: HT orx

∼→ (Λt)|t=v2deg(x) , where v2 = #k
−1.

For r ∈ N we define an element T
(∞)
r,x ∈ HX by the equation

T
(∞)
r,x

[r]
=

{
0 if r 6≡ 0 (mod deg(x))
deg(x)

r Ψ−1
kx

(
p r

deg(x)

)
if r ≡ 0 (mod deg(x))

and we put T
(∞)
r =

∑
x T

(∞)
r,x . Note that this sum is finite since there are only

finitely many closed points on X of a given degree.

Recall the subalgebras H
(µ)
X of HX defined in Section 2.4. In particular, H

(∞)
X

is the Hall algebra of the category of torsion sheaves on X . As the Hall algebra of

Nkx
is commutative for any x, it follows that H

(∞)
X is commutative and hence for

any slope µ the algebra H
(µ)
X is commutative as well.

By definition, T
(∞)
r ∈ H

(∞)
X . For an arbitrary µ ∈ Q we put T

(µ)
r = ǫµ,∞

(
T

(∞)
r

)
.

As ǫµ1,µ2 ◦ ǫµ2,µ3 ≃ ǫµ1,µ3 , we have ǫµ1,µ2

(
T

(µ2)
r

)
= T

(µ1)
r for any µ1, µ2.

Definition 4.2. Let U+
X ⊂ H+

X be the K-subalgebra generated by all elements

T
(µ)
r for r ≥ 1 and µ ∈ Q∪{∞}, and let U−X ⊂ H−X be the (isomorphic) subalgebra

defined in a similar way. We denote by UX the subalgebra of DHX generated by
U+

X and U−X .

It will be convenient for us to introduce one more type of notation : if µ = l
n

with n ≥ 1 and l, n relatively prime, we put T(±rn,±rl) = (T
(µ)
r )± ∈ U±X . Similarly,

we put T(0,±r) = (T
(∞)
r )± and T(0,0) = 1. We also set Z = Z2, so that

Z± =
{
(q, p) ∈ Z2 | ± q > 0 or q = 0,±p ≥ 0

}
, Z∗ = Z2\{(0, 0}

and Z = Z+ ∪ Z−. Thus, by definition, U±X is the subalgebra of DHX generated

by T(q,p) for (q, p) ∈ (Z)±. Note also that by construction the ŜL(2,Z)-action on

DHX preserves UX . In fact, since i∗
(
T(q,p)

)
= T(q,p) for any involution i of X , this

action factors through SL(2,Z).
Finally, it will be necessary to consider a new system of generators for U+

X .
Namely, for α ∈ Z+ we put

1ss
α =

∑

H=α;H∈Cµ(α)

[H] ∈ H+
X [α].
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This sum is finite. If α = (q, p) with p, q relatively prime then (see e.g. [S1],
Section 6.3.) we have

(4.1) 1 +
∑

r≥1

1ss
rαs

r = exp

( ∑

r≥1

Trα

[r]
sr

)
.

In particular, 1ss
α ∈ U+

X and the set
{
1ss

α | α ∈ Z+
}

indeed generates U+
X .

4.3. Let us now introduce completions of U+
X and U+

X ⊗ U+
X . Put U

6≥n
X [α] :=

U+
X [α] ∩ H

6≥n
X [α] and U

≥n
X [α] := U+

X/U
6≥n
X [α]. We can define

(4.2) Û+
X [α] := lim

←−
n

U
≥n
X [α],

then clearly Û+
X [α] ⊆ Ĥ+

X [α]. In the same way, we denote

(4.3) U+
X [α]⊗̂U+

X [β] := lim
←−
n,m

U
≥n
X [α] ⊗ U

≥m
X [β] ⊆ H+

X [α]⊗̂H+
X [β].

By definition, an element a ∈ Ĥ+
X [α] belongs to Û+

X [α] if and only if jetn(a) ∈
U
≥n
X [α] for all n. Similarly, a ∈ H+

X [α]⊗̂H+
X [β] belongs to U+

X [α]⊗̂U+
X [β] if and

only if jetm,n(a) ∈ U
≥m
X [α] ⊗ U

≥n
X [β] for all m,n.

Next, we set

Û+
X :=

⊕

α∈Z+

Û+
X [α] and U+

X⊗̂U+
X =

⊕

α∈Z+

( ∏

β+γ=α

U+
X [β]⊗̂U+

X [γ]
)
.

The aim of this section is to prove the following result :

Proposition 4.3. Û+
X is a topological sub-bialgebra of Ĥ+

X . That is, Û+
X is stable

under the product, and we have ∆α,β

(
Û+

X [α+ β]
)
⊂ U+

X [α]⊗̂U+
X [β].

Proof. We first show that Û+
X is stable under multiplication. Let a ∈ Û+

X [α] and

b ∈ Û+
X [β], and fix un ∈ U+

X [α], vn ∈ U+
X [β] so that jetn(a) = jetn(un), and

jetn(b) = jetn(vn) for all n. Then by the continuity of the product (Lemma 2.4) for

all m we can find n such that jetm(ab) = jetm(unvn), hence ab ∈ Û+
X [α + β]. The

same proof shows that U+
X⊗̂U+

X is a subalgebra of H+
X⊗̂H+

X .

To prove the stability of Û+
X under the coproduct, it is enough to show that

∆(1ss
α) ∈ U+

X⊗̂U+
X for any α. For this, we introduce another set of generators, this

time for Û+
X . Namely, we denote

1α :=
∑

F ;F=α

[F ] ∈ Ĥ+
X [α]

From the existence and splitting of the Harder-Narasimhan filtrations we deduce

the following equality in ĤX [α]

(4.4) 1α = 1ss
α +

∑

t>1

∑

α1+···+αt=α
µ(α1)<···<µ(αt)

v
P

i<j
〈αi,αj〉1ss

α1
· · ·1ss

αt
,

from which we conclude that jetn(1α) ∈ U
≥n
X [α] for any n, and thus 1α belongs to

Û+
X . Next, we use the following well-known property of Hall algebras (see e.g. [S4,

Lemma 1.7]) : for any α, β ∈ Z+,

(4.5) ∆α,β(1α+β) = v〈α,β〉1α ⊗ 1β .



20 IGOR BURBAN* AND OLIVIER SCHIFFMANN†

It follows that for any polynomial u = u(1α1 , . . . ,1αr
) we have ∆(u) ⊂ U+

X⊗̂U+
X .

The inclusion ∆(1ss
α) ∈ U+

X⊗̂U+
X is thus a consequence of the continuity of the map

∆ together with the next Lemma :

Lemma 4.4. For any α ∈ Z+ and any n ∈ Z there exists an integer m(n), a
polynomial un ∈ K

[
t1, t2, . . . , tm(n)

]
and classes α1, α2, . . . , αm(n) ∈ Z+ satisfying

m(n)∑
i=1

αi = α such that jetn(1ss
α) = jetn

(
un(1α1 ,1α2 , . . . ,1αm(n)

)
)
.

Proof. We prove this lemma by induction on rank(α). The case rank(α) = 0 is
clear since 1ss

α = 1α. Assume that α = (r, d) and that the assertion is proven for
all classes β such that rank(β) < r. From the formula (4.4) we get the following

expression in ĤX [α]:

1ss
α = 1α−

∑

rank(α)=rank(γ)
n≤µ(γ)<µ(α)

v〈γ,α−γ〉1ss
γ 1ss

α−γ −
∑

t>1

∑

β1+···+βt=α
rank(βi)<rank(α)

n≤µ(β1)<···<µ(βt)

v
P

i<j
〈βi,βj〉1ss

β1
· · ·1ss

βt
+ rn,

where jetn(rn) = 0. Note that both sums in the right hand side of the equality are
finite. In particular, there are finitely many classes γ = (r, d′) such that d > d′

and µ(γ) ≥ n. Applying the above formula an appropriate number of times to the
element 1ss

γ we obtain

(4.6) 1ss
α = 1α +

k∑

i=1
rank(γi)=rank(α)

1γi
pi +

l∑

j=1
β1+···+βn(j)=α

rank(βi)<rank(α)

qj 1ss
β1

1ss
β2
. . .1ss

βn(j)
+ r′n,

where jetn(r′n) = 0, pi are polynomials in elements of type 1(0,l) and qj are scalars.
Now by the continuity of the product (Lemma 2.4) there exists an integer N such
that for all classes β1, β2, . . . , βn(j) occurring in the decomposition (4.6) of 1ss

α and

for any x1 ∈ ĤX [β1], x2 ∈ ĤX [β2], . . . , xn(j) ∈ ĤX [βnj
] we have

jetn(x1x2 . . . xn(j)) = jetn
(
jetN (x1) jetN (x2) . . . jetN (xn(j))

)
.

Approximating the elements 1ss
β1
,1ss

β2
, . . . ,1ss

βn(j)
up to the order N by polynomials

uβ1 , uβ2, . . . , uβn(j)
in classes 1γ , we obtain the desired polynomial un, approxi-

mating 1ss
α up to the order n. This concludes the proof of the Lemma and of

Proposition 4.3. X

4.4. We now come to the main result of this Section. In Section 2.4. we described a
PBW-type basis of H+

X , which by Proposition 3.4 extends to a PBW basis of HX .

We give a similar construction for U+
X . For µ ∈ Q ∪ {∞} let us denote by

U
±,(µ)
X ⊂ U±X the subalgebra generated by

{
(T

(µ)
r )± | r ≥ 1

}
. We also let ~⊗

µ
stand

for the restricted ordered tensor product (see Section 2.4.).

Theorem 4.5. The multiplication map induces isomorphisms of K-vector spaces

(4.7)
~⊗

µ

U
±,(µ)
X

∼→ U±X ,
~⊗

µ

U
+,(µ)
X ⊗ ~⊗

µ

U
−,(µ)
X

∼→ UX .

Moreover, U±X is a topological bialgebra: ∆α,β(U±X [α+ β]) ⊂ U±X [α] ⊗ U±X [β].

Proof. In order to prove the above result, it will be convenient to consider U
+

X [α] :=

Û+
X [α] ∩ H+

X [α], where the intersection is taken in Ĥ+
X [α]. Of course, U+

X [α] ⊂
U

+

X [α] and as it will turn out in the end U
+

X [α] = U+
X [α], but a priori U

+

X [α]
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might be bigger. Observe however that U
+

X [α] = U+
X [α] for any class α = (0, d),

d ∈ Z>0. It is easy to see that U
+

X =
⊕

α∈Z+

U
+

X [α] is a subalgebra of H+
X . In

addition, it is also a sub-bialgebra :

Lemma 4.6. For any α, β we have ∆α,β

(
U

+

X [α+ β]
)
⊂ U

+

X [α] ⊗ U
+

X [β].

Proof. By Proposition 4.3 It is enough to show that

(4.8)
(
U+

X [α]⊗̂U+
X [β]

)
∩

(
H+

X [α] ⊗ H+
X [β]

)
= U

+

X [α] ⊗ U
+

X [β],

where the intersection is taken in H+
X [α]⊗̂H+

X [β]. Let Vα,β stand for the left hand

side of (4.8). The inclusion U
+

X [α]⊗U
+

X [β] ⊂ Vα,β is obvious since U
+

X [α]⊗U
+

X [β] ⊂
U+

X [α]⊗̂U+
X [β] and U

+

X [α] ⊗ U
+

X [β] ⊂ H+
X [α] ⊗ H+

X [β]. For any sheaf F of class γ

let prF : Ĥ+
X [γ] → C be the linear form picking the coefficient of [F ]. To prove the

reverse inclusion, it is enough to show that for any F of class α and any G of class
β we have

(4.9) (prF ⊗1)(Vα,β) ⊂ U
+

X [β] and (1 ⊗ prG)(Vα,β) ⊂ U
+

X [α].

Indeed, if (4.9) holds then

Vα,β ⊂
(
U

+

X [α] ⊗ H+
X [β]

)
∩

(
H+

X [α] ⊗ U
+

X [β]
)

= U
+

X [α] ⊗ U
+

X [β].

Finally, we prove (4.9). Let v ∈ Vα,β , and let F ,G be sheaves of class α and β

respectively. Choose m ∈ Z such that F ,G ∈ Coh≥m. As v ∈ U+
X [α]⊗̂U+

X [β] for

any m′ < m we have v ∈ U+
X [α] ⊗U+

X [β] +
(
H
6≥m′

X [α]⊗̂H+
X [β] + H+

X [α]⊗̂H
6≥m′

X [β]
)

from which we deduce that (prF ⊗1)(v) ∈ U+
X [β] + Ĥ

6≥m′

X [β] and (1 ⊗ prG)(v) ∈
U+

X [α] + Ĥ
6≥m′

X [α]. Equation (4.9) follows and the Lemma is proved. X

Let UX ⊂ DHX be the subalgebra generated by two copies U
±
X ⊂ H±X of U

+

X .

Corollary 4.7. The algebra UX is isomorphic to the Drinfeld double of U
+

X , and

the multiplication map induces an isomorphism U
+

X ⊗ U
−
X ≃ UX .

Proof. Since U
+

X is a topological bialgebra, by the same proof as for Proposition 3.4

we see that DU
+

X
∼= U

+

X ⊗U
−
X and DU

+

X is isomorphic to the subalgebra of DHX

generated by U
+

X and U
−
X . X

Recall that we defined for any ν ∈ Q∪{∞} a subalgebra H
+,(ν)
X and that we set

U
+,(ν)
X = U+

X ∩ H
+,(ν)
X . By Lemma 2.6, we have a tensor product decomposition

m : ~
⊗
ν

H
+,(ν)
X

∼→ H+
X . Let H

+,vec
X = m

( ~⊗
ν<∞

H
+,(ν)
X

)
be the subspace spanned by the

classes of the vector bundles, so that the multiplication map m : H
+,vec
X ⊗H

+,(∞)
X →

H+
X is an isomorphism. The following property of U

+

X will be crucial for our
purposes.

Lemma 4.8. We have U
+

X ⊂ H
+,vec
X ⊗ U

+,(∞)
X .

Proof. Consider an element u ∈ U
+

X [α]. Viewing it as an element of m
(
H

+,vec
X ⊗

H
+,(∞)
X

)
we can expand it as a finite sum u =

∑
l ul with ul =

∑
i u
′
l,i · u′′l,i, where

u′l,i ∈ H
+,vec
X and u′′l,i ∈ H

+,(∞)
X

[
(0, l)

]
for all i, l. Let π : H+

X → H
+,vec
X denote the

projection of the Hall algebra on its subspace. Observe that as any coherent sheaf
F has a unique maximal torsion subsheaf, we get

(4.10) (π ⊗ 1)∆α−(0,l),(0,l)(u) = v

〈
α−(0,l),(0,l)

〉 ∑

i

u′l,i ⊗ u′′l,i.
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On the other hand, by Lemma 4.6 we have

∆α−(0,l),(0,l)(u) ∈ U
+

X

[
α− (0, l)

]
⊗ U

+

X

[
(0, l)

]
= U

+

X

[
α− (0, l)

]
⊗ U+

X

[
(0, l)

]
.

But then from (4.10) we obtain
∑

i u
′
l,i ⊗ u′′l,i ∈ H

+,vec
X ⊗ U+

X

[
(0, l)

]
for all l, and

hence u ∈ H
+,vec
X ⊗ U

+,(∞)
X as wanted. X

After these preliminaries we are now ready to prove that the multiplication map

induces an isomorphism ~⊗
ν

U
+,(ν)
X ≃ U+

X . For any ν ∈ Q ∪ {∞} there exists

γ ∈ SL(2,Z) such that γ(ν) = ∞. Recall that the group ŜL(2,Z) acts on DHX

and preserves UX . Moreover, this action is compatible with the decomposition

DHX ≃ ~⊗
µ

H
+,(µ)
X ⊗ ~⊗

µ
H
−,(µ)
X (i.e. it permutes the subalgebras H

±,(µ)
X ). Hence,

using Corollary 4.7 and Lemma 4.8 we obtain the chain of inclusions

(4.11) γ(U+
X) ⊂ U

+

X ⊗ U
−
X ⊂

( ~⊗

µ<∞

H
+,(µ)
X ⊗ U

+,(∞)
X

)
⊗

( ~⊗

µ<∞

H
−,(µ)
X ⊗ U

−,(∞)
X

)
.

But then, applying γ−1 to (4.11) and using the equality γ−1
(
U

+,(∞)
X

)
= U

+,(ν)
X

we see that U+
X ⊂ ~⊗

µ<ν
H

+,(µ)
X ⊗ U

+,(ν)
X ⊗ ~⊗

µ>ν
H

+,(µ)
X . As this is true for all ν,

we get U+
X ⊂ ~⊗

µ
U

+,(µ)
X and finally U+

X = ~⊗
µ

U
+,(µ)
X . Of course, this also proves

the equality U−X = ~⊗
µ

U
−,(µ)
X . The second statement in Theorem 4.5 is now a

consequence of Corollary 4.7 and the next result :

Lemma 4.9. The two algebras U+
X and U

+

X coincide.

Proof. Recall that the condition u ∈ U
+

X [α] means that u ∈ H+
X [α] and for all n

there exists un ∈ U+
X [α] such that jetn(u) = jetn(un). But note that for n ≫ 0

we have u = jetn(u) and as U+
X ≃ ~⊗

ν
U

+,(ν)
X , we get jetn(un) ∈ U+

X [α]. Therefore,

U+
X = U

+

X and as a corollary,

UX = DU
+

X = U
+

X ⊗ U
−
X = U+

X ⊗ U−X = DU+
X = UX .

This concludes the proof of Theorem 4.5. X

4.5. We finish this section with several important computations regarding U+
X .

They will be used in a crucial way in the next section. Let us set, for i ≥ 1

ci(X) = #X(Fqi) vi[i]/i.

Lemma 4.10. For any x = (q, p) ∈ Z+ we have

(Tx, Tx) =
cr(X)

(v−1 − v)
,

where r = gcd(q, p) ∈ N.

Proof. Using the SL(2,Z) action, we may restrict ourselves to the case of x = (0, r)
with r > 0. We have

(
T(0,r), T(0,r)

)
=

∑

d|r

∑

x: deg(x)=d

(
T (∞)

r,x , T (∞)
r,x

)
.

If x is of degree d, it follows from Proposition 4.1, iii) that

(
T (∞)

r,x , T (∞)
r,x

)
=

d[r]2

r(qr − 1)
=

vr[r]d

r(v−1 − v)
.
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The statement of the Lemma follows from the equation
∑

d|r

∑

x: deg(x)=d

d = #X(Fqr ).

X

We now turn to the coproduct. Define elements Θx ∈ UX by equating the
coefficients of the following generating series:

(4.12)
∑

i

Θix0s
i = exp

(
(v−1 − v)

∑

r≥1

Trx0s
r

)
,

for any x0 ∈ Z∗ such that deg(x0) = 1.

Lemma 4.11. For any p ∈ Z we have:

∆(T(1,p)) = T(1,p) ⊗ 1 +
∑

l≥0

Θ(0,l) ⊗ T(1,p−l).

Proof. Up to a twist by a line bundle, it is enough to consider T(1,0) = 1ss
(1,0). By

the proof of Proposition 4.3, we have

∆(1,−n),(0,n)(1(1,0)) = vn1(1,−n) ⊗ 1(0,n),
∆(0,n),(1,−n)(1(1,0)) = v−n1(0,n) ⊗ 1(1,−n),
∆(0,n),(0,m)(1(0,n+m)) = 1(0,n) ⊗ 1(0,m)

and moreover

1ss
(1,0) =

∑

n≥0

vn1(1,−n)χn,

where χn =
∑

r>0(−1)r
∑

l1+···+lr=n 1(0,l1) · · ·1(0,lr). Denote by

1(s) =
∑

l≥0

1(0,l)s
l, χ(s) =

∑

l≥0

χls
l

the generating functions of 1(0,n) and {χn}. It is easy to see that the elements
{χn} are completely determined by the relations

∑
i+j=l 1(0,i)χj = δl,0, which can

be rewritten in the form 1(s)χ(s) = 1. In particular, from the formula for the
coproduct we have ∆(1(s)) = 1(s) ⊗ 1(s) from which we deduce that ∆

(
χ(s)

)
=

χ(s) ⊗ χ(s), i.e ∆(0,n),(0,m)(χn+m) = χn ⊗ χm. This implies that

∆(1,−l),(0,l)

(
1ss

(1,0)

)
=

∑

k≥0

vl+k1(1,−l−k)χk ⊗
(
1(0,l) + 1(0,l−1)χ1 + · · · + χl

)
.

Using
∑

i+j=l 1(0,i)χj = δl,0, we get ∆(1,−l),(0,l)

(
1ss

(1,0)

)
= δl,01

ss
(1,0) ⊗ 1. A similar

computation shows that

∆(0,l),(1,−l)(1
ss
(1,0)) =

∑

k≥0

(
vk−l1(0,l) +v2+k−l1(0,l−1)χ1 + · · ·+vk+lχl

)
⊗1(1,−l−k)χk.

Hence, setting θl =
∑l

k=0 v
2k−l1(0,l−k)χk we obtain

∆(1ss
(1,0)) = 1ss

(1,0) ⊗ 1 +
∑

l≥0

θl ⊗ 1ss
(1,−l).

Finally, we claim that the elements θl can be characterized through the rela-
tion

∑
l≥0

θls
l = exp

(
(v−1 − v)

∑
r≥1

T(0,r)s
r
)
. To see this, note that by definition
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∑
l≥0

1(0,l)s
l = exp

( ∑
r≥1

T(0,r)

[r]
sr

)
, hence

∑
l≥0

χls
l = exp

(
− ∑

r≥1

T(0,r)

[r]
sr

)
. But then

∑

l≥0

θls
l =1(v−1s)χ(vs) = exp

( ∑

r≥1

v−r T(0,r)

[r]
sr −

∑

r≥1

vr T(0,r)

[r]
sr

)

=exp

(
(v−1 − v)

∑

r≥1

T(0,r)s
r

)

as desired. X

The final computation which we shall need is the following. Set

1vec
α =

∑

F vec. bdle
F=α

[F ] ∈ Û+
X .

Lemma 4.12. For any n ≥ 0 and for any α = (r, d) ∈ Z+ we have

(4.13)
[
T(0,n),1α

]
= cn(X)

vrn − v−rn

vn − v−n
1α+(0,n),

(4.14)
[
T(0,n),1

vec
α

]
= cn(X)

vrn − v−rn

vn − v−n
1vec

α+(0,n).

Proof. Since 1α =
∑

d≥0 v

〈
α,(0,d)

〉
1vec

α−(0,d)1(0,d) and
[
T(0,n),1(0,d)

]
= 0 for all n

and d, the equation (4.13) is a consequence of (4.14). We shall thus only deal with
(4.14).

Assume first that rank(α) = 1. Up to twisting by a line bundle, we may assume
that α = (1, 0). Note that 1vec

(1,0) = T(1,0). There exist elements S0, . . . , Sn with

Si belonging to the algebra generated by T(0,1), . . . , T(0,i) such that T(0,n)T(1,0) is
equal to a linear combination

(4.15) T(0,n)T(1,0) =

n∑

i=0

T(1,n−i)Si,

We first compute Sn. Let us write T(0,n) =
∑
T wT [T ] and Sn =

∑
T uT [T ], for

some scalars wT , uT ∈ K. Observe that a term of the form [L⊕T ], for a line bundle
L of degree zero and a torsion sheaf T of degree n, only appears on the right hand
side of (4.15) in T(1,0)Sn, and with a coefficient equal to uT v

−n. On the other hand,

the coefficient of [L ⊕ T ] in the left hand side is equal to vnwT F
L⊕T
T ,L = v−nwT .

Hence uT = wT for all T and Sn = T(0,n).

Now we show that Si = 0 for i 6= 0, n. By Proposition 2.2, ∆
(
[T(0,n), T(1,0)]

)
=[

∆(T(0,n)),∆(T(1,0))
]
. By Proposition 4.1, ii), ∆

(
T(0,n)

)
= T(0,n) ⊗ 1 + 1 ⊗ T(0,n).

Let C = ∆
(
[T(0,n), T(1,0)]

)
. From Lemma 4.11 we deduce the formula

(4.16) C =
[
T(0,n), T(1,0)

]
⊗ 1 + 1 ⊗

[
T(0,n), T(1,0)

]
+

∑

l≥1

Θ(0,l) ⊗
[
T(0,n), T(1,−l)

]
.

Let i0 be the maximal value of i distinct from n for which Si 6= 0. Note that
∆(1,n−i0),(0,i0)

(
T(1,n−i)Si

)
= 0 if i < i0, while we have ∆(1,n−i0),(0,i0)

(
T(1,n−i0)Si0

)
=

vnT(1,n−i0) ⊗ Si0 . But on the other hand, for any j > 0, (4.16) implies that

∆(1,n−j),(0,j)

(
[T(0,n), T(1,0)]

)
= 0. Hence i0 = 0,

[
T(0,n), T(1,0)

]
= z0T(1,n) for some

z0 ∈ K. In order to determine the value of z0 we compute the scalar product(
T(0,n)T(1,0),1(1,n)

)
in two different ways. By Proposition 4.1 ii), T(0,n) is orthogo-

nal to the subalgebra generated by T(0,i) for i < n. Hence, using (4.1) and (4.4), we
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obtain 1(1,n) = T(1,n) + vn

[n]
T(1,0)T(0,n) + u where u ∈

(
KT(1,n) ⊕KT(1,0)T(0,n)

)⊥
,

and using Lemma 4.10 we get

(
T(0,n)T(1,0),1(1,n)

)
=
vn

[n]

(
T(1,0)T(0,n), T(1,0)T(0,n)

)
+ z0

(
T(1,n), T(1,n)

)

=
vn

[n]

cn(X)c1(X)

(v−1 − v)2
+ z0

c1(X)

v−1 − v
.

(4.17)

On the other hand, we have
(
T(0,n)T(1,0),1(1,n)

)
=

(
T(0,n) ⊗ T(1,0),∆(1(1,n))

)
and

by (4.5) we have ∆(1(1,n)) = v−n

[n]
T(0,n)⊗T(1,0) +u′ where u′ ∈

(
KT(0,n)⊗T(1,0)

)⊥
.

It follows that
(4.18)

(
T(0,n)T(1,0),1(1,n)

)
=
v−n

[n]

(
T(0,n), T(0,n)

)(
T(1,0), T(1,0)

)
=
v−n

[n]

c1(X)cn(X)

(v−1 − v)2
.

Combining (4.17) and (4.18) we finally obtain z0 = cn(X) as wanted.
Now let r = rank(α) be arbitrary. Repeating the argument above, we have[

T(0,n),1
vec
(r,d)

]
∈ Ûvec

X . Let V be a vector bundle of class α + (0, n) and let T be a

torsion sheaf of degree n. The coefficient of [V ] in
[
[T ],1vec

α

]
is easily seen to be

equal to vrn
∣∣Homsurj(V , T )

∣∣/aT , where Homsurj(V , T ) stands for the set of surjective
maps V ։ T . By the inclusion-exclusion principle, we have

∣∣Homsurj(V , T )
∣∣ =

∣∣Hom(V , T )
∣∣ −

∑

T ′(T

∣∣Hom(V , T ′)
∣∣ +

∑

T ′′(T ′(T

∣∣Hom(V , T ′′)
∣∣ − · · ·

= v−2rn −
∑

T ′(T

v−2rdeg(T ′) +
∑

T ′′(T ′(T

v−2rdeg(T ′′) − · · ·

(the sum is finite since there are only finitely many subsheaves of T ). The above
expression only depends on T and the rank r. Hence

[
T(0,n),1

vec
α

]
= ur1

vec
α+(0,n)

for some ur ∈ K, which remains to be determined. For this, we use the iterated
coproduct map ∆1,...,1. We have, by (4.5)

(4.19) ∆1,...,1

(
1(r,l)

)
=

∑

l1+···+ln=l

v
P

i<j
(lj−li)1(1,l1) ⊗ · · · ⊗ 1(1,lr),

while by Proposition 4.1, ii),

∆1,...,1

(
[T(0,n),1(r,d)]

)

=

[ r∑

j=1

1 ⊗ · · · ⊗ T(0,n) ⊗ · · · ⊗ 1,∆1,...,1(1(r,d))

]

= u1

r∑

j=1

∑

d1+···+dn=d

v
P

i<j
(dj−di)1(1,d1) ⊗ · · · ⊗ 1(1,dj+n) ⊗ · · · ⊗ 1(1,dr).

(4.20)

Comparing (4.19) with (4.20) and using the case r = 1 treated above we get

ur = u1v
(r+1)n

r∑

j=1

v−2jn = cn(X)
vrn − v−rn

vn − v−n

as wanted. We are done. X
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5. The algebra Eσ,σ̄

5.1. The aim of this section is to give a presentation for UX by generators and rela-
tions. Since it is convenient to depict elements of UX graphically, a few notational
preparations are in order. Let o stand for the origin in Z. By a path in Z we shall
mean a finite sequence p = (x1,x2, . . . ,xr) of non-zero elements of Z, which we
represent as the piecewise-linear curve in Z joining o,x1,x1 +x2, . . . ,x1 + · · ·+xr.
Let x̂y ∈ [0, 2π[ denote the angle between the segments ox and oy. A path
p = (x1, . . . ,xr) will be called convex if 0 ≤ x̂1x2 ≤ x̂1x3 ≤ · · · ≤ x̂1xr <
2π. Put L0 = N(0,−1) and let Conv′ be the collection of all convex paths

p = (x1, . . . ,xr) satisfying x̂1L0 ≥ x̂2L0 ≥ · · · ≥ x̂rL0 ≥ 0. Two convex
paths p = (x1, . . . ,xr) and q = (y1, . . . ,ys) in Conv′ will be called equivalent
if {x1, . . . ,xr} = {y1, . . . ,ys}, i.e. if p is the result of permuting together sev-
eral segments of q of the same slope. We denote by Conv the set of equiva-
lence classes of convex paths in Conv′. We shall only consider convex paths up
to equivalence, and we shall simply refer to elements of Conv as “paths”. We
also introduce Conv+ (resp. Conv−) as the set of convex paths (x1, . . . ,xs)

satisfying x̂1L0 ≥ · · · ≥ x̂sL0 ≥ π (resp. π > x̂1L0 ≥ · · · ≥ x̂sL0 ≥ 0).
Concatenation of paths then yields an identification Conv ≃ Conv+ × Conv−.
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Figure 3. Examples of paths

Observe that distinct paths could give rise to the same polygonal line in Z: for
instance p =

(
(0, 1), (0, 1)

)
and p′ =

(
(0, 2)

)
. To a path p = (x1, . . . ,xr) we

associate the element Tp := Tx1 · · ·Txr
∈ UX . This expression is well-defined since

U
±,(µ)
X is commutative for all slopes µ. Moreover, it follows from Theorem 4.5 that

the set of elements
{
Tp |p ∈ Conv±

}
is a K-basis of U±X .

Remark 5.1. The group SL(2,Z) naturally acts on the set of paths. For any ray

L in Z starting at the origin we can define the set ConvL by replacing L0 by

L, and any σ ∈ SL(2,Z) maps bijectively ConvL to Convσ(L). In particular,

{Tp |p ∈ ConvL} is a K-basis of UX for any L. Such a choice of L corresponds to
a choice of a t-structure in the derived category Db

(
Coh(X)

)
.

For x,y ∈ Z∗ we let ∆x,y stand for the triangle with corners o,x,x + y. If
x̂y < π then TyTx (corresponding to the path (y,x)) can be written as a linear
combination of elements Tp where p runs through the set of convex paths lying in
∆x,y. Indeed, this is a reformulation of Remark 2.7 when x,y ∈ Z+, and follows
for an arbitrary pair (x,y) by SL(2,Z)-invariance of UX .
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Figure 4. The triangle ∆x,y and some convex paths in it

Several arguments in this Section are based on Pick’s formula, which we recall :
for any pair of non-colinear points x,y ∈ Z :

(5.1) | det(x,y)| = deg(x) + deg(y) + deg(x + y) − 2 + 2#(∆x,y ∩ Z).

5.2. We shall describe UX as an abstract algebra of paths modulo a minimal set
of “straightening” relations given below. If x = (q, p) ∈ Z∗ we write deg(x) =
gcd(q, p) ∈ N. For non-collinear x,y ∈ Z∗ we set ǫx,y = sign

(
det(x,y)

)
∈ {±1}.

Definition 5.2. Fix σ, σ̄ ∈ C∗ with σ, σ̄ 6∈ {±1} and set ν = (σσ̄)−1/2 and

ci(σ, σ̄) = (σi/2 − σ−i/2)(σ̄i/2 − σ̄−i/2)[i]ν/i.

Let Eσ,σ̄ be the C-algebra generated by {tx |x ∈ Z∗} modulo the following set of
relations

i) If x,x′ belong to the same line in Z then

[tx, tx′ ] = 0,

ii) Assume that x,y ∈ Z∗ are such that deg(x) = 1 and that ∆x,y has no interior
lattice point. Then

[ty, tx] = ǫx,ycdeg(y)(σ, σ̄)
θx+y

ν−1 − ν

where the elements θz, z ∈ Z∗ are defined by the following generating series

(5.2)
∑

i

θix0s
i = exp

(
(ν−1 − ν)

∑

r≥1

trx0s
r

)
,

for any x0 ∈ Z∗ such that deg(x0) = 1.

Observe that θz = (ν−1 − ν)tz whenever deg(z) = 1. We also denote by E
±
σ,σ̄ the

subalgebra of Eσ,σ̄ generated by tx for x ∈ Z±.

Lemma 5.3. For any γ ∈ SL(2,Z) we have an algebra automorphism Φγ : Eσ,σ̄ →
Eσ,σ̄ given by the formula Φγ(tx) = tγ(x) for any x ∈ Z∗.

Proof. Obvious. X

5.3. Now let #X(Fqr ) stand for the number of rational points of X over Fqr and

recall that v = q−1/2. By a theorem of Hasse (see e.g. [Ha], App. C) there exist
conjugate algebraic numbers σ, σ, satisfying σσ = q, such that

#X(Fqr ) = qr + 1 − (σr + σr)
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for any r ≥ 1. These numbers σ, σ are the eigenvalues of the Frobenius automor-
phism acting on H1

(
XFq

,Ql

)
. Note that ci(σ, σ̄) = vi[i]#X(Fqi)/i = ci(X).

Theorem 5.4. The assignment Ω : tx 7→ Tx for x ∈ Z∗ extends to an isomorphism
Ω : Eσ,σ̄ ≃ UX ⊗K C.

Example 5.5. Before giving the proof of this theorem, let us illustrate the use of the
straightening relation ii). We shall compute t(1,2)t(1,−1), which corresponds to the

path
(
(1, 2), (1,−1)

)
not belonging to Conv. By ii) we have

[
t(0,1), t(1,1)

]
= c1t(1,2),

hence
[
t(1,2), t(1,−1)

]
=

1

c1

{[
[t(0,1), t(1,−1)], t(1,1)

]
+

[
t(0,1), [t(1,1), t(1,−1)]

]}

= [t(1,0), t(1,1)] +
[
t(0,1), t(2,0) +

1

2
(v−1 − v)t2(1,0)

]

where we have used ii) in each term, and the relation

θ(2,0)

v−1 − v
= t(2,0) +

1

2
(v−1 − v)t2(1,0).

Now, by ii) again we have
[
t(1,0), t(1,1)

]
= −c1t(2,1),

[
t(0,1), t(2,0)

]
= c2t(2,1) and[

t(0,1), t(1,0)

]
= t(1,1). Hence, we obtain

[
t(1,2), t(1,−1)

]
= (c2 − c1)t(2,1) +

1

2
(v−1 − v)c1(t(1,1)t(1,0) + t(1,0)t(1,1))

= (c2 − c1)t(2,1) +
1

2
(v−1 − v)c1

(
c1t(2,1) + 2t(1,0)t(1,1)

)

Gathering terms, we get

t(1,2)t(1,−1) = t(1,−1)t(1,2) +
1

2
(v−1 − v)c1t(1,0)t(1,1) + c1

(
[3] − vc1

)
t2,1.

Observe that all three paths
(
(1,−1), (1, 2)

)
,
(
(1, 0), (1, 1)

)
,
(
(2, 1)

)
belong to Conv.

We begin the proof of Theorem 5.4. Let us first show that the map Ω is well-
defined, i.e. that relations i) and ii) hold in UX . By the SL(2,Z)-invariance of
Eσ,σ̄ and UX it is enough to prove relation i) for x = (0, r),x′ = (0, r′). The

subalgebra H
(∞)
X of HX is stable under the coproduct (as any subsheaf or quotient

of a torsion sheaf is again a torsion sheaf) and can be described as the product over
all points x ∈ X of the Hall bialgebras of the categories Nkx

. By Proposition 4.1, ii),

∆
(
T

(∞)
r,x

)
= T

(∞)
r,x ⊗ 1 + 1⊗T

(∞)
r,x . Hence, from the definition of the Drinfeld double

we get
[
T(0,r), T(0,r′)

]
= 0 as desired.

Let us prove the relation ii). Assume that x,y are as in ii). Since deg(x) = 1
we cannot have deg(y) = deg(x + y) = 2. On the other hand, it is easy to see
that if deg(y) ≥ 2 and deg(x + y) ≥ 3, or if deg(x + y) ≥ 2 and deg(y) ≥ 3 then
∆x,y contains interior lattice points. In conclusion, we either have deg(y) = 1 or
deg(x + y) = 1. We split our argument according to this dichotomy.

Case a.1. We have deg(x+y) = 1 and ǫx,y > 0. Up to the SL(2,Z)-action, we may
fix x = (1, 0) and if det(x,y) = r then we may furthermore assume that y = (s, r)
for some 0 ≤ s < r. Using Pick’s formula (5.1), we deduce that there are no points
inside ∆x,y if and only if deg(y) = r, which implies y = (0, r). Then relation ii)
follows from Lemma 4.12.

Case a.2 We have deg(x + y) = 1 and ǫx,y < 0. Without loss of generality, we
may assume that x = (r1, d1),y = (r2, d2) with r1 > 0 and r2 > 0. Now let us use
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the antiautomorphism D of Proposition 3.11. Note that D(T(r,d)) = T(r,−d) and
ǫD(x),D(y) > 0 hence the desired relation follows from case a.1 above.

Case b. We have deg(y) = 1. In that situation, simple application of Pick’s
formula (5.1) shows that deg(x + y) =

∣∣ det(x,y)
∣∣, and, after exchanging the role

of x and y if necessary and using the SL(2,Z) invariance we may assume that
x = (1, n),y = (−1, l). The expression for the commutator

[
Ty, Tx

]
can be now

derived from the definition of the Drinfeld double together with Lemma 4.11 : if
n+ l > 0 then ǫ(1,n),(−1,l) = 1 and the relation R

(
T(1,n), T(−1,l)

)
is

T(−1,l)T(1,n) = T(1,n)T(−1,l) + Θ(0,n+l)(T(−1,l), T(−1,l)) = T(1,n)T(−1,l) + c1
Θ(0,n+l)

v−1 − v
,

and if n+ l < 0 then ǫ(1,n),(−1,l) = −1 and the relation R
(
T(1,n), T(−1,l)

)
is

T(1,n)T(−1,l) = T(−1,l)T(1,n) + Θ(0,n+l)

(
T(−1,l), T(−1,l)

)
= T(−1,l)T(1,n) + c1

Θ(0,n+l)

v−1 − v
.

This concludes the proof of relation ii).

By the above, Ω is well-defined and extends to a surjective algebra morphism
Ω : Eσ,σ̄ ։ UX ⊗ C. Moreover, this morphism is SL(2,Z)-equivariant. In the rest
of the proof, we construct an inverse of Ω. We first concentrate on the “positive”
subalgebra E

+
σ,σ̄ of Eσ,σ̄. For any path p = (x1, . . . ,xr) we set tp = tx1 · · · txr

.
Note that from the surjectivity of Ω and Proposition 4.5 it follows that the elements{
tp | p ∈ Conv+

}
are linearly independent.

Lemma 5.6. The subalgebra E
+
σ,σ̄ is equal to

⊕
p∈Conv+ Ctp.

Proof. The inclusion is obvious in one direction. For the other inclusion, we have
to show that any path p in Z+ can be “straightened” using the relations ii). By an
argument, which is at all steps similar to the proof of Lemma 3.1, it is sufficient to
show that for any x,y ∈ Z+ with µ(y) > µ(x), we have

(5.3) tytx ∈
⊕

p∈Ix,y

Ctp,

where by definition Ix,y is the set of convex paths in ∆x,y joining o to x + y. We
shall achieve this by induction on det(y,x).

If det(y,x) = 1 then (e.g. by Pick’s formula) deg(x) = deg(y) = deg(x + y) = 1
thus tytx = txty + c1tx+y by relation ii). So let us fix d > 1 and let us assume that
(5.3) holds for any x′,y′ satisfying det(y′,x′) < d.

If p = (x1, . . . ,xr) is any path in Z+ we put p# = (xσ(1), . . . ,xσ(r)) where σ is
the least length permutation satisfying µ(xσ(1)) ≤ µ(xσ(2)) ≤ · · · ≤ µ(xσ(r)), and

we denote by a(p) the area of the polygon bounded by p and p#. Observe that if p′

is a subpath of p then a(p′) ≤ a(p). Also, if z,w ∈ Z+ are such that µ(z) > µ(w)
then a

(
(z,w)

)
= det(z,w).
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Figure 5. The area a(p) of a path in Z+.



30 IGOR BURBAN* AND OLIVIER SCHIFFMANN†

Claim. For any path p in Z+ satisfying a(p) < d we have tp ∈ ⊕
p∈Conv+ Ctp.

Proof of Claim. The assertion is true by definition if a(p) = 0. If a(p) > 0
then p = (x1, . . . ,xr) with µ(x1) ≤ · · · ≤ µ(xs) > µ(xs+1) for some s. We have
det(xs,xs+1) ≤ a(p) < d hence txs

txs+1 =
∑

i uitqi
for some qi ∈ Ixs+1,xs

and,
setting pi = (x1, . . . ,xs−1,qi,xs+2, . . . ,xr) we get tp =

∑
i uitpi

. It is clear that

for all i both pi and p
#
i strictly lie inside the polygon bounded by p and p#, so

that a(pi) < a(p).
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Figure 6. The area of a path p before and after one straightening.

We may iterate this process until we are only left with paths q satisfying a(q) = 0.
Hence tp ∈ ⊕

p∈Conv+ Ctp and the claim is proven. X

Now let us fix x,y such that µ(y) > µ(x) and det(y,x) = d. If ∆x,y has
no interior lattice point then (see the proof of relation ii) above) either deg(x) =
deg(y) = deg(x + y) = 2, or deg(x) = 1 or deg(y) = 1. In the first case, we
can assume up to the SL(2,Z)-action that y = (2, 0) and x = (0, 2). We leave to
the reader to check that repeated applications of ii) as in Example 5.5 lead to the
equality

t(0,2)t(2,0) = t(2,0)t(0,2) + ct2(1,1) + c2
(c2
c1

− 2
)
t(2,2),

where c = (v−1−v)
2

(
c2

c1
(c2 + c2

c1
− 1) + (v−1−v)

2 c2(1 − c1)
)
. In the last two cases,

relation ii) directly yields (5.3). So we may assume that ∆x,y contains interior
lattice points.

Let us choose z ∈ ∆x,y so that the triangle ozx has no interior points and
deg(z) = deg(x − z) = 1. Note that (5.3) is stable under the action of SL(2,Z),
hence without loss of generality we can assume that x − z ∈ Z+. By construction,
z and x− z satisfy both conditions of the relation ii), hence [tz, tx−z] = c1

θx

v−1−v =

c1tx + u for some u belonging to the subalgebra
〈
tx0 , . . . , t(deg(x)−1)x0

〉
generated

by tx0 , . . . , t(deg(x)−1)x0
, where x0 = x

deg(x) . Therefore,

(5.4) c1[ty, tx] =
[
[ty, tz

]
, tx−z] +

[
tz, [ty, tx−z]

]
− [ty, u].
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Figure 7. The decomposition x = z + (x − z).

Note that c1 6= 0 since |σ| = |σ̄| =
√
q. As z is an interior point of ∆x,y we have

z = αx + βy for some α, β ∈]0, 1[ satisfying α > β. It follows that det(y, z) < d
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and det(y,x − z) < d, and by the induction hypothesis

[ty, tz] ∈
⊕

p∈Iz,y

Ctp, [ty, tx−z] ∈
⊕

q∈Ix−z,y

Ctq.

Next, as µ(x − z) < µ(z) < µ(y) we have, for any p ∈ Iz,y,
(
(x − z),p

)
∈

Conv+ and (p, (x − z))# =
(
(x − z),p

)
. Thus a

(
(x − z,p)

)
= 0 and a

(
(p,x −

z)
)

= det(y + z,x − z) = (1 + β − α) det(y,x) < d. It follows by the Claim that[
[ty, tz], tx−z

]
∈ ⊕

Conv+ Ctp. In a similar manner, for any q ∈ Ix−z,y we have

a
(
(z,q)

)
< a

(
(z,y,x − z)

)
= det(y + z,x − z) = det(y,x) − det(x + y, z) < d

since det(x + y, z) > 0; and a
(
(q, z)) < a((y,x − z, z)

)
= det(y,x) = d. Thus[

tz, [ty, tx−z]
]
∈ ⊕

Conv+ Ctp. Finally, let us write u =
∑deg(x)−1

j=1 ajtjx0 with

aj ∈
〈
tx0 , . . . , t(deg(x)−1)x0

〉
of weight (deg(x)− j)x0. By the induction hypothesis,

tyaj ∈ ⊕
p Ctp where p ranges in I(deg(x)−j)x0,y. But as for any such j and p

we have a
(
(p, jx0)

)
= deg(x)−j

deg(x) d < d the Claim implies that tyu ∈ ⊕
Conv+ Ctp.

Hence all together, by (5.4), tytx ∈ ⊕
Conv+ Ctp. Finally, let us write tytx =∑

p∈Conv+ cptp. Applying Ω, we get TyTx =
∑

p cpTp. By Remark 2.7, we have

TyTx ∈ ⊕
p∈Ix,y

CTp so that cp = 0 for p 6∈ Ix,y. Therefore tytx ∈ ⊕
p∈Ix,y

Ctp as

desired. This closes the induction step and proves Lemma 5.6. X

Now we are ready to finish the proof of Theorem 5.4. Define E
−
σ,σ̄ in the same way

as E
+
σ,σ̄ by replacing Z+ by Z−. By Lemma 5.6, E

−
σ,σ̄ is equal to

⊕
p∈Conv− Ctx.

The map Ω restricts to isomorphisms E
±
σ,σ̄ ≃ U±X ⊗ C. By Theorem 4.5 and

Corollary 4.7, UX is generated by U±X modulo the collection of relations R(g, h)

for sums of classes of semi-stable sheaves g ∈ U+
X and h ∈ U−X . Now, if g and h are

as above and µ(g) = µ(h) then R(g, h) expresses the fact that U
+,(µ)
X and U

−,(µ)
X

commute. By relation ii), R
(
Ω−1(g),Ω−1(h)

)
holds in Eσ,σ̄. If on the other hand

µ(g) 6= µ(h) then there exists γ ∈ SL(2,Z) such that γ(g), γ(h) ∈ U+
X . In that

situation, applying γ to R(g, h) yields a relation Rγ
(
γ(g), γ(h)

)
in U+

X . We deduce

that Rγ(Ω−1◦γ(g)),Ω−1◦γ(h))) holds in E
+
σ,σ̄. As Eσ,σ̄ carries an action of SL(2,Z)

compatible with Ω, it follows that R
(
Ω−1(g),Ω−1(h)

)
holds in Eσ,σ̄. Therefore, Ω−1

extends to a morphism UX ⊗ C → Eσ,σ̄, which is the desired inverse to Ω. The
theorem is proved. X

5.4. We still assume that (σ, σ̄) is associated to an elliptic curve X . The proof of
Theorem 5.4 in fact gives the following. Let ′E+

σ,σ̄ be the C-algebra generated by

elements tx for x ∈ Z+ subject to relations i) and ii) of Section 5.2.

Corollary 5.7. The assignment Ω : tx 7→ Tx for x ∈ Z+ extends to an algebra
isomorphism ′

E
+
σ,σ̄

∼→ U+
X . In other words, the natural morphism ′

E
+
σ,σ̄ → E

+
σ,σ̄ is

an isomorphism.

6. Further results : integral form and central extension

In this section, we gather some useful properties of the algebras Eσ,σ̄ and UX .

6.1. For any smooth projective curve X Kapranov [K1] considered1 a natural sub-

algebra H
sph
X of HX which we call the spherical Hall algebra of X . By definition,

H
sph
X is generated by the elements

{
1(0,d) | d ∈ N

}
∪

{
1ss

(1,l) | l ∈ Z
}
. In the

1at least implicitly



32 IGOR BURBAN* AND OLIVIER SCHIFFMANN†

language of automorphic forms used in [K1], these generators are the simplest and
most natural cuspidal elements of HX . In the case of an elliptic curve X it turns

out that our algebra U+
X coincides with H

sph
X . This is an easy consequence of the

following corollary of Theorem 5.4 :

Corollary 6.1. The algebra U+
X is generated by

{
Tα | rank(α) ≤ 1

}
. Similarly, the

algebra UX is generated by either of the following two sets :
{
T(±1,0), T(0,±1)

}
,

{
T(1,0), T(0,1), T(−1,−1)

}
.

Proof. We prove the first statement by induction. Denote by W the subalgebra
generated by {Tα | rank(α) ≤ 1} and assume that Tr,s ∈ W for any (r, s) ∈ Z+ with
r < n ≥ 2. Fix z = (n, p) ∈ Z+, and let x be the point of

{
(r, s) | r < n

}
closest

to the segment oz. By construction there are no interior lattice points in ∆x,z−x

and thus
[
Tx, Tz−x

]
= uθz for some u 6= 0. By the induction hypothesis, we have

Tx, Tz−x ∈ W, and θz ∈ (v−1 − v)Tz ⊕ W. We deduce that Tz ∈ W as wanted.

Let us deal with the second assertion. As before, denote by W the subalge-
bra generated by

{
T(±1,0), T(0,±1)

}
. We have, for any l ∈ Z,

[
T(0,±1), T(1,l)

]
=

±c1T(1,l±1) and it follows that T(1,l) ∈ W for any l ∈ Z. Similarly, T(−1,l) ∈ W for

any l ∈ Z. But then, considering commutators
[
T(−1,l), T(1,l′)

]
, we have Θ(0,n) ∈ W

for any n as well. The subalgebra generated by {Θ(0,n)} and the one generated
by {T(0,n)} being equal, we see that W contains all T(r,n) with |r| ≤ 1. Applying

the first statement of the corollary, we get U±X ⊂ W, from which we deduce that
W = UX .

The last statement follows the second statement together with the relations[
T(1,0), T(−1,−1)

]
= c1T(0,−1) and

[
T(−1,−1), T(0,1)

]
= c1T(−1,0). X

Kapranov exhibited certain relations satisfied by the generators
{
1(0,d),1

ss
(1,l) | d >

0, l ∈ Z
}
, for any curve X . These are the so-called functional equations for Eisen-

stein series. When X is an elliptic curve, they take the following form. Put

E+(t) =
∑

p∈Z

1ss
(1,p)t

p, ψ+(s) =
∑

d≥0

1(0,d)s
d.

Then (see [K1], Thm. 3.3.)

(6.1) E+(t1)E
+(t2) =

ζX(t1/t2)

ζX(t2/t1)
E+(t2)E

+(t1)

(6.2) ψ+(t1)E
+(t2) = ζ(σ−1/2σ̄−1/2t1/t2)E

+(t2)E
+(t1),

(6.3) ψ+(t1)ψ
+(t2) = ψ+(t2)ψ

+(t1),

where ζX(t) =
(1 − σt)(1 − σ̄t)
(1 − t)(1 − qt)

is the zeta function of X . It is known however

that relations (6.1 – 6.3) do not exhaust the complete list of relations of U+
X . In

other words, if U+
X denotes the algebra generated by some elements T(1,l), T(0,d)

subject to relations (6.1 – 6.3) above then there is a nontrivial surjective algebra
homomorphism U+

X ։ U+
X . One may hope to use the description of U+

X given in

this paper to explicitly describe the kernel of this map U+
X ։ U+

X . This appears
to us to be a very interesting problem: using Kapranov’s interpretation of the Hall
algebra in terms of automorphic forms for GL(n) over a function field, elements of
this kernel correspond to some new, higher rank relations satisfied by residues of
Eisenstein series.
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The reader will find yet another presentation of U+
X in [SV2], Section 9, this

time in terms of shuffle (or Feigin-Odesskii) algebras.

6.2. We have only defined so far an algebra Eσ,σ̄ for complex values of σ and σ̄.
However, it is also natural to consider a version of Eσ,σ̄, where σ and σ̄ are formal

parameters. Put R = C
[
σ±1/2, σ̄±1/2

]
, K = Frac(R) = C

(
σ1/2, σ̄1/2

)
where σ, σ̄

are now formal variables, and consider the K-algebra EK generated by elements{
tx | x ∈ Z∗

}
modulo the relations i) and ii) of Section 5.2.We also set ν = (σσ̄)−1/2,

t̃x = tx/[deg(x)]ν , and for an arbitrary path p = (x1, . . . ,xr) we put t̃p = tp/[p]ν
with [p]ν = [deg(x1)]ν · · · [deg(xr)]ν . Finally, we let ER stand for the R-subalgebra
of EK generated by

{
t̃x | x ∈ Z∗

}
. Subalgebras E

±
R are defined in a similar fashion.

There is an obvious action of SL(2,Z) on EK and ER.

Proposition 6.2. The following hold :
i) E

±
K =

⊕
p∈Conv± Kt̃p,

ii) there is a triangular decomposition EK = E
+
K ⊗ E

−
K; in particular, we have

EK =
⊕

p∈Conv Kt̃p.

Proof. We begin with i). Let us first show that the elements
{
t̃p | p ∈ Conv+

}
are

linearly independent. For this we shall use a specialization argument. Let ′E+
R be

the R-algebra generated by some elements
{
′t̃x | x ∈ Z+

}
modulo the relations i)

and ii) in Section 5.2 (these relations have coefficients in R when written in terms
of the generators t̃x). By construction there is a canonical map ′E+

R → ′
E

+
R⊗RK =

EK, u 7→ u⊗1 whose image is E
+
R. Moreover, for any elliptic curveX with Frobenius

eigenvalues {α, α} there is a specialization morphism

evX : ′E+
R → (′E+

R)|σ=α
σ̄=α

= E
+
α,α ≃ U+

X .

Now assume that
∑

p∈Conv+ zpt̃p is a nontrivial (finite) linear relation in ER, with

zp ∈ R. Then c :=
∑

p∈Conv+ zp
′t̃p is a torsion element of ′E+

R. Let Z denote its

support, which a strict subvariety of Spec(R) ≃ C∗ × C∗. We have

(6.4) evX(c) = evX

( ∑

p

zp
′t̃p

)
=

∑

p

zpT̃p ∈ U+
X

where T̃p = Tp/[p]. If (α, α) 6∈ Z then evX(c) = 0 and (6.4) yields a nontrivial linear

dependence relation between the elements
{
T̃p | p ∈ Conv+

}
, in contradiction with

Theorem 4.5. It remains to find an elliptic curve with (α, α) 6∈ Z. For all prime
powers q let N(q) be the number of possible Frobenius eigenvalues {α, α} for an
elliptic curve over Fq (i.e. the number of isogeny classes of elliptic curves over Fq).
Then limq→∞N(q) = ∞ (this is, for instance, a consequence of the main theorem
in [Ho]). But by Bezout’s theorem the number of intersection points between Z
and Yq =

{
(y, y′) | yy′ = q

}
is bounded as q → ∞. This provides the existence of

the required elliptic curve, and concludes the proof of the linear independence of
the elements

{
t̃p | p ∈ Conv+

}
in E

+
R and hence in E

+
K. The same arguments as

in Lemma 5.6 now show that E
+
K =

⊕
p∈Conv+ Kt̃p.

We turn our attention to ii). We shall first show that the multiplication map
E

+
K ⊗ E

−
K → EK is surjective. For this, using i), it is enough to see that

(6.5) t̃y t̃p ∈ E
+
KE
−
K

for any y ∈ Z− and p ∈ Conv+. We say that a path p = (x1, . . . ,xr) is concave
if (xr, . . . ,x1) is convex. Let Conc± denote the set of concave paths in Z±, and
put Conc ≃ Conc+ × Conc−. A symmetric version of Lemma 5.6 and i) above
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shows that E
±
K =

⊕
p∈Conc± Kt̃p. In particular, for any x,y in Z with x̂y > π we

can write t̃y t̃x as a linear combination of elements t̃p for concave paths p lying in
the triangle ∆x,y (compare with Section 5.1.). Now choose y ∈ Z− and x ∈ Z+. If
x̂y > π then by the above remark t̃y t̃x ∈ ⊕

p∈Conc Kt̃p; if x̂y = π then [t̃y, t̃x] = 0;

and if x̂y < π then t̃y t̃x ∈ ⊕
p∈Conv Kt̃p. In all cases,

(6.6) t̃yt̃x ∈ E
+
KE
−
K

We shall prove (6.5) by induction on the rank of −y. If rank(−y) = 0 (i.e. if y =
(l, 0) for some l ∈ N−) then

[
t̃y, t̃x

]
∈ E

+
K for any x ∈ Z+. Thus

[
t̃y, t̃(x1,...,xr)

]
=∑r

i=1 t̃(x1,...,xi−1)

[
t̃y, t̃xi

]
t̃(xi+1,...,xr) ∈ E

+
K. Now fix y ∈ Z− such that −y is of

positive rank and assume that (6.5) holds for all y′ of smaller rank. Observe that
if rank(x) > 0 then from (6.6) we have [t̃y, t̃x] =

∑
i ui t̃p+

i
t̃p−

i
with p±i ∈ Conv±

and p−i = (z
(i)
1 , . . . , z

(i)
li

) satisfying rank(−z
(i)
j ) < rank(−y). As a consequence,

by the induction hypothesis we have t̃p−
i
E

+
K ⊂ E

+
K ⊗ E

−
K. Next, if rank(x) = 0

then [t̃y, t̃x] ∈ E
−
K. From these two facts we deduce that if (x1, . . . ,xr) ∈ Conv+

then [t̃y, t̃p] =
∑r

i=1 t̃(x1,...,xi−1)[t̃y, t̃xi
]t̃(xi+1,...,xr) ∈ E

+
KE
−
K, as wanted. This closes

the induction and proves the surjectivity of the map E
+
K ⊗ E

−
K → EK. It only

remains to see that the elements t̃p+ t̃p− for p± ∈ Conv± and α ∈ Z are linearly
independent over K. For this, we may argue in the same fashion as in i) above
using a specialization argument. X

We view ER and EK as generic versions of the Hall algebra UX . Moreover, one
can lift various notions from UX to these generic forms. For instance we set

Ê
+

K =
⊕

α∈Z

Ê
+

K[α], Ê
+

K[α] =
∏

p∈Conv+

wt(p)=α

Kt̃p

and define elements 1ss
α ∈ E

+
K,1α ∈ Ê

+

K for any α ∈ Z+ by the formulas

1 +
∑

l≥1

1ss
rα0

sl = exp

( ∑

l≥1

t̃lα0s
l

)

for any α0 such that deg(α0) = 1 and

1α = 1ss
α +

∑

t>1

∑

α1+···+αt=α
µ(α1)<···<µ(αt)

ν
P

i<j
〈αi,αj〉1ss

α1
· · ·1ss

αt
.

The elements
{
1ss

α | α ∈ Z+
}

belong to and actually generate over R the subalgebra

E
+
R, while the elements

{
1α | α ∈ Z+

}
belong to and topologically generate over

R the subalgebra Ê
+

R. It is clear that the elements 1ss
α and 1α specialize, for each

given elliptic curve X , to the corresponding elements of the Hall algebras U+
X and

Û+
X . Using the generators

{
1α | α ∈ Z+

}
we may define a comutiplication ∆ on

E
+
K by means of the formula (4.5). This comultiplication preserves E

+
R.

Let us now give a more precise description of the integral form ER :

Proposition 6.3. The following proposition hold :
i) E

±
R =

⊕
p∈Conv± Rt̃p,

ii) there is a triangular decomposition ER = E
+
R ⊗ E

−
R; in particular, we have

ER =
⊕

p∈Conv Rt̃p,

iii) for any α, α ∈ C\{±1} we have (ER)∣∣σ=α
σ̄=α

= Eα,α,
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iv) we have: (ER)∣∣σ=1
σ̄=1

= C[t̃x]x∈Z∗ is a (commutative) polynomial algebra.

Proof. To prove statement i), we have to check that E
+
R is linearly spanned over R

by
{
t̃p | p ∈ Conv+

}
. Let us temporarily denote by V the space

⊕
p∈Conv+ Rt̃p.

It is enough to show that V is a subalgebra of E
+
K, i.e. that t̃p ∈ V for an arbitrary

path p in Z+. For this we proceed along the lines of Lemma 5.6, whose notations
we shall freely use. It is sufficient to show that

(6.7) t̃xt̃y ∈ V

for any x,y ∈ Z+. We argue by induction on
∣∣det(x,y)

∣∣ ∈ N. The claim (6.7) is
clear if det(x,y) = 0. Let us fix an integer l > 0 and assume that (6.7) holds for
any pair x′,y′ with

∣∣det(x′,y′)
∣∣ < l. Then, as in Lemma 5.6 we have t̃q ∈ V for

any path q with a(q) < l. Let us fix a pair x,y such that det(x,y) = l. Up to
SL(2,Z)-action, we may assume that x = (0, n) and y = (r, d). Because the change
of basis matrix between {t̃z} and {1ss

z } is invertible over R, it is equivalent to prove
that [t̃x,1

ss
y ] ∈ V. By Proposition 6.2 i) we have [t̃x,1

ss
y ] ∈ ⊕

p∈Ix,y
Kt̃p. We have

to show that all the coefficients belong to R. For this we write

1y = 1(r,d) =1ss
(r,d) +

∑

k≥1

νrk1ss
(r,d−k)1

ss
(0,k)+

+
∑

(r1,d1)+···+(rl,dl)=(r,d)
d1
r1

<···<
dl
rl

; r1<r

ν
P

i<j
(ridj−rjdi)1ss

(r1,d1)
· · ·1ss

(rl,dl)
.(6.8)

Thus

t̃(0,n)1
ss
y = [t̃(0,n),1y] − 1y t̃(0,n) −

∑

k≥1

νrk t̃(0,n)1
ss
(r,d−k)1

ss
(0,k)−

−
∑

(r1,d1)+···+(rl,dl)=(r,d)
d1
r1

<···<
dl
rl

; r1<r

ν
P

i<j
(ridj−rjdi)t̃(0,n)1

ss
(r1,d1)

· · ·1ss
(rl,dl)

.(6.9)

Observe that the infinite sums in (6.9) become finite after projection to
⊕

p∈Ix,y
t̃p.

In the second sum in (6.9) we have r1 < r therefore det
(
(0, n), (r1, d1)

)
< rn = l and

by our induction hypothesis we may straighten t̃(0,n)1
ss
(r1,d1)

=
∑

q∈Ix,(r1,d1)
uqt̃q.

For any convex path q ∈ Ix,(r1,d1) we have a
(
q ∪ ((r2, d2), . . . , (rl, dl)

)
< l and

hence t̃q1
ss
(r2,d2)

· · ·1ss
(rl,dl)

∈ V. By Lemma 4.12
[
t̃(0,n),1(r,d)

]
∈ V. Finally, after

projection to
⊕

p∈Ix,y
Kt̃p we have 1y t̃(0,n) ∈ V. All together, working modulo V

and projecting to
⊕

p∈Ix,y
Kt̃p we get:

(6.10) t̃(0,n)1
ss
(r,d) ≡ −

∑

k≥1

νrnt̃(0,n)1
ss
(r,d−k)1

ss
(0,k).

Substituting (6.10) into itself (i.e. developing each t̃(0,n)1
ss
(r,d−k) according to (6.10))

sufficiently many times yields an expression

(6.11) t̃(0,n)1
ss
(r,d) ≡

∑

k≥N

t̃(0,n)1
ss
(r,d−k)wk,

where wk ∈ R
[
t̃(0,1), t̃(0,2), . . .

]
. For N ≫ 0 the right-hand side of (6.11) van-

ishes after projection to
⊕

p∈Ix,y
Kt̃p. It follows that t̃(0,n)1

ss
(r,d) ∈ V as desired.

Statement i) is proven.
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The proof of ii) is completely parallel to that of Proposition 6.2 ii). For iii),
notice that by Theorem 5.4 there exists an algebra map

ev∗X : UX ≃ Eα,α → (ER)∣∣σ=α
σ̄=α

, t̃x 7→ t̃x.

This map clearly sends the C-basis
{
t̃p | p ∈ Conv+

}
of U+

X ⊗K C to the C-basis{
t̃p | p ∈ Conv+

}
of (ER)∣∣σ=α

σ̄=α
. It remains to prove iv). For this we shall show that

[ER,ER] ∈ c1(σ, σ̄)ER. Obviously, it is enough to prove that [t̃x, t̃y] ∈ c1(σ, σ̄)ER

for any x,y ∈ Z∗. Using the SL(2,Z)-action we may assume that x = (0, n) for
n ≥ 0 and that y ∈ Z+. By Lemma 4.12 we have

[
t̃(0,l),1α

]
=
cn(σ, σ̄)[rank(α)]νn

[n]ν
1α+(0,n)

and it is easy to check that cn(σ, σ̄)/[n]ν ∈ c1(σ, σ̄)R. Since the elements 1α

topologically generate Ê
+

R, we may approximate t̃y up to any degree of precision
by a polynomial with R-coefficients in the 1α. We conclude using the continuity of
the multiplication (see Lemma 2.4). X

As a consequence of iv) above and Weyl’s theorem (see [W]) there is a natural
isomorphism

(ER)|σ=1
σ̄=1

∼−→ C[x±1
1 , . . . , y±1

1 , . . .]S∞ = ΛΛ, t̃(r,d) 7→
∑

i

xr
i y

d
i .

Hence ER may be thought of as a flat deformation of the ring of invariants ΛΛ.

6.3. There is an obvious S2-symmetry in EK : numbers σ, σ̄ corresponding to the
two Frobenius eigenvalues in H1(X

k
,Ql), are interchangeable. Less obvious is the

fact that this S2-symmetry may be upgraded to an S3-symmetry. To see this, we
simply renormalize the generators. Set

ux =
tx

cdeg(x)(σ, σ̄)
, (x ∈ Z∗)

and for any i ≥ 1 put

(6.12) αi = αi(σ, σ̄) = (1 − σi)(1 − σ̄i)(1 − (σσ̄)−i)/i.

The defining relations in Section 5.2 may now be rewritten as
i) For a pair of collinear x,x′ we have

[ux, ux′ ] = 0.

ii) Assume that x,y ∈ Z∗ are such that deg(x) = 1 and that ∆x,y has no interior
lattice point. Then

[uy, ux] = ǫx,y
θx+y

α1

where the elements θz, z ∈ Z∗ are obtained by equating the Fourier coefficients
of the collection of relations

(6.13)
∑

i

θix0s
i = exp

( ∑

r≥1

αrurx0s
r

)
,

for any x0 ∈ Z∗ such that deg(x0) = 1.

In this presentation it is obvious that EK is equipped with an S3 family of C-
automorphisms Θγ for γ ∈ Perm{σ, σ̄, (σσ̄)−1} simply defined by Θγ(ux) = ux,
Θγ(•) = γ(•) for • ∈ {σ, σ̄, (σσ̄)−1}. This symmetry may seem puzzling at first

glance : for any fixed elliptic curve X over a finite field Fq we have |σ| = |σ̄| = q1/2

while
∣∣(σσ̄)−1

∣∣ = q−1.
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6.4. In order to define the coproduct ∆ of a Hall algebra H or to construct the
Drinfeld double of H, it is usually necessary to add an extra commutative ‘Cartan’
subalgebra K to H (see e.g. [S4]). In the present case of the category of coherent
sheaves over an elliptic curve we could avoid doing so because the symmetrized
Euler form vanishes. However adding the corresponding “Cartan” subalgebra K

provides a natural central extension H̃X of H (and similarly for UX and EK). This
central extension is also important in applications (see e.g. [SV2])

For the sake of brevity, we only write down the relations in ẼK, using the rescaled
presentation of Section 6.3.

Definition 6.4. Let ẼK be the K-algebra defined by generators {κα | α ∈ Z} and
{ux | x ∈ Z∗} modulo the following set of relations :

i) the subalgebra K generated by {κα | α ∈ Z} is central and we have

κ0 = 1, κακβ = κα+β ,

ii) if x,y belong to the same line in Z then

[uy, ux] = δx,−y

κx − κ
−1
x

αdeg(x)

iii) if x,y ∈ Z∗ are such that deg(x) = 1 and that ∆x,y has no interior lattice
point then

[uy, ux] = ǫx,yκα(x,y)
θx+y

α1
,

where

α(x,y) =

{
ǫx(ǫxx + ǫyy − ǫx+y(x + y))/2 if ǫx,y = 1,

ǫy(ǫxx + ǫyy − ǫx+y(x + y))/2 if ǫx,y = −1,

and where the elements θz, z ∈ Z∗, are given by
∑

i

θix0s
i = exp

( ∑

r≥1

αrurx0s
r
)
,

for any x0 ∈ Z∗ such that deg(x0) = 1, where the coefficients αr are given by
(6.12).

Note that by relation ii), the algebra ẼK contains many copies of the Heisenberg

algebra (one for each line in Z). Hence ẼK can be thought of as a flat deformation
of a Heisenberg algebra over Z.

The triangular decomposition of ẼK now takes the form

(6.14) ẼK ≃ E
+
K ⊗ K ⊗ E

−
K.

One consequence of the central extension is that the group SL(2,Z) no longer acts

on ẼK : only its universal cover S̃L(2,Z) does. There is a short exact sequence

1 −→ Z −→ S̃L(2,Z) −→ SL(2,Z) −→ 1.

For any slope q
p ∈ Q∪{∞} and any γ ∈ S̃L(2,Z) we define a winding number n(γ, q

p )

as follows. There is a natural action of SL(2,Z) on the circle S1 = (R2 \ {0})/R+⋆.

Using the identification S1 = R/2Z, we can uniquely lift this action to an S̃L(2,Z)-

action on R. Any (q, p) ∈ Z∗ gives rise to an element (q : p) ∈ S1 and if (q : p) ∈ R
is any lift of (q : p) then

(6.15) n

(
γ̃,
q

p

)
=

{
#

(
Z ∩ [(q, p), γ̃((q : p))]

)
if γ̃((q : p)) ≥ (q : p)

−#
(
Z ∩ [γ̃((q, p)), (q : p)]

)
otherwise.
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One checks that the following rule gives rise to an S̃L(2,Z)-action on ẼK by
automorphisms :

(6.16) Φ(κx) = κΦ(x), Φ(ux) = uΦ(x)κ
n(Φ,µ(x))
Φ(x) .

We leave it to the reader to define the integral forms, specializations, etc of ẼK.
All properties (such as (6.14) and (6.16), finite generation etc.) extend to these
settings.

7. Summary

Let us sum up the main results obtained in this article. To any elliptic curve
X defined over a finite field k = Fq we have attached an associative algebra UX

over the field K = Q(v), where v−2 = q. Let σ ∈ Q be such that σ̄σ = q and∣∣X(Fqi)
∣∣ = qi + 1 − (σi + σ̄i). Then we have:

1. The algebra UX is Z2-graded and K = UX

[
(0, 0)

]
is the center of UX .

2. The algebra UX can be described by the following generators and relations:
(1) For (r, d) ∈ Z2 \ {(0, 0)} we have a generator T(r,d) ∈ UX

[
(r, d)

]
.

(2) Let gcd(r, d) = 1, then we defined elements Θi(r,d) ∈ UX

[
i(r, d)

]
, i ≥ 1 using

the following equality

1 +
∞∑

i=1

Θi(r,d)s
i = exp

(
(v−1 − v)

∞∑

j=1

Tj(r,d)s
j
)
,

where s is a formal parameter.
(3) If the vectors (r, d) and (r′, d′) are collinear then we have:

[
T(r,d), T(r′,d′)

]
= 0.

(4) Assume that (r, d), (r′, d′) ∈ Z2 \ {(0, 0)} are such that gcd(r, d) = 1 and the
triangle with the corners (0, 0), (r, d), (r′, d′) contains no interior points. Then

[
T(r,d), T(r′,d′)

]
= sign

(
rd′ − r′d

)
ch

Θ(r+r′,d+d′)

v − v−1
,

where h = gcd(r′, d′) and ch =
vh[h]v
h

∣∣X(Fqh)
∣∣. Relations (3) and (4) form

a complete list of relations of UX , see Theorem 5.4. The structure constants

of UX are Laurent polynomials in σ±
1
2 and σ̄±

1
2 , so we may also introduce

a generic version ER of the Hall algebra UX , defined over the ring R =

C[σ±
1
2 , σ̄±

1
2 ], see Section 6.2.

3. The algebra UX is finitely generated and the elements T(±1,0), T(0,±1) generate
UX , see Corollary 6.1.

4. The algebra UX carries a natural SL(2,Z)–action: for any γ ∈ SL(2,Z) the
map T(r,d) 7→ Tγ(r,d) induces an algebra automorphism of UX .

5. Let U±X =
〈
T(r,d)|(r, d) ∈ (Z2)±

〉
, then U±X are graded topological bialgebras, see

Lemma 4.6. This means that there is a graded coassociative ring homomorphism

∆ : U±X −→ U±X⊗̂U±X ,

taking value in a certain completion of U±X ⊗ U±X and given by the collection of
linear maps for each α, β ∈ (Z2)±

∆α,β : U±X
[
α+ β

]
−→ U±X [α] ⊗ U±X [β].
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6. The algebra UX is isomorphic to the Drinfeld double of the topological bialgebra
U+

X and one has the decomposition UX = U+
X ⊗ U−X , where U±X =

〈
T(r,d)|(r, d) ∈

(Z2)+
〉
, see Theorem 4.5.

7. The algebra UX has a monomial basis
{
T(r1,d1)T(r2,d2) . . . T(rn,dn)

}
parameter-

ized by the set of convex paths
(
(r1, d1), (r2, d2), . . . , (rn, dn)

)
in Z2, see Theorem

4.5.

8. The algebra UX is a flat deformation of the ring

K
[
x±1 , x

±
2 , . . . , y

±
1 , y

±
2 , . . .

]S∞

of symmetric Laurent series.

9. One can also write down some explicit formulas for the coproduct of certain
generators of U+

X (Proposition 4.1 and Lemma 4.11):

∆
(
T(0,d)

)
= T(0,d) ⊗ 1 + 1⊗T(0,d) and ∆

(
T(1,d)

)
= T(1,d) ⊗ 1 +

∑

l≥0

Θ(0,l) ⊗T(1,d−l).

Appendix A

In this appendix, we provide the details regarding the properties of the Fourier-
Mukai transforms on elliptic curves defined over a finite field k.

For a projective curve Y defined over the field k consider the functor Pic0
Y/k

:
Schk −→ Sets given by

Pic0
Y/k(S) =

{
F ∈ CohY×S | F is S − flat and for any closed point

s : Spec(l) −→ S holds s∗
l
(F) ∈ Pic0(Yl)

}/
∼

where Yl = Y×Spec(k) Spec(l) and the map sl : Yl −→ Y×S is induced by the base
change and the equivalence relation is F ∼ F ⊗ π∗S(L) for any locally free rank one
sheaf L on S.

In the case of an elliptic curve X over k with a rational point p0 the functor
Pic0

X/k is representable by the pair (X,P), where P = OX×X(−∆+p0×X+X×p0)

and ∆ ⊂ X ×X is the diagonal, see for example [AK, example 8.9.iii].

The sheaf P∨ is locally free on X × X and hence flat over X . Moreover, for

any closed point p : Spec(l) −→ X one has an isomorphism P∨
∣∣
Xl

∼=
(
P

∣∣
Xl

)∨
. By

the universal property of (X,P) there exists a unique map i : X −→ X and a line
bundle L onX such that P∨⊗π∗2L ∼= (1×i)∗P . Denote by σ = p0×1 : X −→ X×X .
From equalities σ∗P∨ ∼= O and σ∗(1 × i)∗P ∼= (1 × i)∗σ∗P ∼= O we conclude that

P∨ ∼= (1 × i)∗P .
Moreover, the isomorphism P ∼= P∨∨ and the universality of (X,P) imply i2 = 1.

Proposition A.1. Let Y be a projective variety over k and k̄ the algebraic clo-
sure of k. For any field extension k ⊂ l denote by Yl = Y ×Spec(k) Spec(l) and
by ϕl : Yl −→ Y the base-change map. Let F , G be two coherent sheaves, denote
Fl = ϕ∗

l
(F) and Gl = ϕ∗

l
(G). Assume that Fk̄

∼= Gk̄ then F ∼= G.

Proof. Let f : Fk̄ −→ Gk̄ and g : Gk̄ −→ Fk̄ be two maps such that gf = 1F
k̄

and fg = 1G
k̄
. From the isomorphism HomO(F ,G)⊗k k̄ ∼= HomO

k̄
(Fk̄,Gk̄) follows

that f =
n∑

i=1

āiϕi and g =
m∑

j=1

b̄jψj , where ā1, . . . , ān, b̄1, . . . , b̄m ∈ k̄, ϕ1, . . . , ϕn

is a basis of HomO(F ,G) over k and ψ1, . . . , ψm a basis of HomO(G,F) over k.
Let l be the finite extension of k generated by the elements ā1, . . . , ān; b̄1, . . . , b̄m,
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then for the base-change map ϕl : Yl −→ X we have ϕ∗
l
(F) ∼= ϕ∗

l
(G). By the

projection formula we get ϕl∗(ϕ
∗
l
F

)
= F ⊗ ϕl∗(Ol). Let d = deg(l/k). Since

Spec(l) = Spec(k) ⊔ Spec(k) ⊔ · · · ⊔ Spec(k)︸ ︷︷ ︸
d times

as a scheme over k, we have Yl =

Y ⊔ Y ⊔ · · · ⊔ Y︸ ︷︷ ︸
d times

and ϕl∗(Ol) = Od. Hence Fd ∼= Gd and the Krull-Schmidt theorem

implies F ∼= G. X

Proof of Proposition 1.2. In the case of an algebraically closed field k̄ this result
was shown by Mukai [Mu]. This isomorphism is equivalent to the fact that

Rπ13(π
∗
12P ⊗ π∗23P) ∼= Oi(∆)[−1],

where Oi(∆) is the structure sheaf of the subscheme i(∆) ⊆ X ×X . The case of a

finite field k can be derived from the corresponding result about k̄ by going into
the algebraic closure: ϕk̄ : Xk̄ −→ X and using the isomorphism

(ϕ
k̄
× ϕ

k̄
)∗OX×X(−∆ + p0 ×X +X × p0) ∼= OX

k̄
×X

k̄
(−∆

k̄
+ p̄0 ×X

k̄
+X

k̄
× p̄0),

the flat base-change and the Proposition A.1 above. X

Proposition A.2. [see [Mu, Proposition 3.8]] Let D = RHom(−,O) be the dual-
izing functor. Then there is an isomorphism of functors

D ◦ Φ ∼= i∗ ◦ [1] ◦ Φ ◦D.

Proof. This result is a corollary of the isomorphism P∨ ∼= (1 × i)∗P and can be
proven along the same lines as in [Mu]. X

Appendix B

In the second appendix, we provide proofs for some technical statements regard-
ing the Drinfeld double construction for topological bialgebras and some properties
of Hopf algebras, which are crucial for the proof of Theorem 4.5.

Proof of Lemma 3.3. For simplicity, we drop the exponents ± in the notation. Since
both statements in the Lemma are similar, we give a proof only of the first one. By
assumption, we have for any k

(B.1)
∑

i,j

a
(1)
j (c

(1)
k )

(2)
i

(
(c

(1)
k )

(1)
i , a

(2)
j

)
=

∑

i,j

(c
(1)
k )

(1)
i a

(2)
j

(
(c

(1)
k )

(2)
i , a

(1)
j

)
,

(B.2)
∑

i,j

b
(1)
j (c

(2)
k )

(2)
i

(
(c

(2)
k )

(1)
i , b

(2)
j

)
=

∑

i,j

(c
(2)
k )

(1)
i b

(2)
j

(
(c

(2)
k )

(2)
i , b

(1)
j

)
.

Note that all sums above are in fact finite. Now, we compute

∑

k,j

(ab)
(1)
j c

(2)
k

(
c
(1)
k , (ab)

(2)
j

)
=

∑

i,j,k

a
(1)
i b

(1)
j c

(2)
k

(
c
(1)
k , a

(2)
i b

(2)
j

)

=
∑

i,j,k,l

a
(1)
i b

(1)
j c

(2)
k

(
(c

(1)
k )

(1)
l , a

(2)
i

)(
(c

(1)
k )

(2)
l , b

(2)
j

)
,

(B.3)

where we used the Hopf property of the pairing ( , ) and Proposition 2.2. Next, by

coassociativity, we have
∑

k,l(c
(1)
k )

(1)
l ⊗(c

(1)
k )

(2)
l ⊗c(2)k =

∑
k,l c

(1)
k ⊗(c

(2)
k )

(1)
l ⊗(c

(2)
k )

(2)
l ,
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and substituting in (B3), we obtain
∑

i,j,k,l

a
(1)
i b

(1)
j c

(2)
k

(
(c

(1)
k )

(1)
l , a

(2)
i

)(
(c

(1)
k )

(2)
l , b

(2)
j

)

=
∑

i,j,k,l

a
(1)
i b

(1)
j (c

(2)
k )

(2)
l (c

(1)
k , a

(2)
i )

(
(c

(2)
k )

(1)
l , b

(2)
j

)

=
∑

i,j,k,l

a
(1)
i (c

(2)
k )

(1)
l b

(2)
j (c

(1)
k , a

(2)
i )

(
(c

(2)
k )

(2)
l , b

(1)
j

)
,

(B.4)

where we made use of (B.2). In the same way, coassociativity and (B.1) allow us
to transform the last expression into

∑

i,j,k,l

a
(1)
i (c

(1)
k )

(2)
l b

(2)
j

(
(c

(1)
k )

(1)
l , a

(2)
i

)
(c

(2)
k , b

(1)
j )

=
∑

i,j,k,l

(c
(1)
k )

(1)
l a

(2)
i b

(2)
j

(
(c

(1)
k )

(2)
l , a

(1)
i

)
(c

(2)
k , b

(1)
j )

=
∑

i,j,k,l

c
(1)
k a

(2)
i b

(2)
j

(
(c

(2)
k )

(1)
l , a

(1)
i

)(
(c

(2)
k )

(2)
l , b

(1)
j

)
.

Finally, using the Proposition 2.2 and the Hopf property of ( , ) again, we can
rewrite the last term as∑

i,j,k

c
(1)
k a

(2)
i b

(2)
j

(
c
(2)
k , a

(1)
i b

(1)
j

)
=

∑

i,k

c
(1)
k (ab)

(2)
i

(
c
(2)
k , (ab)

(1)
i

)
.

All together, we see that R(ab, c) is a consequence of relations (B.1) and (B.2). The
Lemma is proved. X

The remaining part of Appendix B is devoted to the

Proof of Proposition 3.4. Recall that by the definition of ∆ we have

∆
(
[F ]

)
=

∑

KF

v−〈F/K,K〉
PFF/K,K

aF
[F/K] ⊗K.

Iterating this formula we have

∆2
(
[F ]

)
= (1 ⊗ ∆)∆

(
[F ]

)
=

∑

LKF

cFF/K,K/L,L[F/K] ⊗ [K/L] ⊗ [L],

where cFF/K,K/L,L = PFF/K,KP
K
K/L,L

v−〈K/K,K〉−〈K/L,L〉

aF . So, in general we can write

(B.5) ∆n
(
[F ]

)
=

∑

FnFn−1···F1F

cFA1,A2,...,An+1
[A1] ⊗ [A2] ⊗ · · · ⊗ [An+1],

where Ai = Fi−1/Fi, An+1 = Fn and

cFA1,A2,...,An+1
= PFA1,F1

PF1

A2,F2
. . . P

Fn−1

An,Fn

v−
P

n
i=1〈Ai,Fi〉

aF
.

We can also write in a dual way:

∆n
(
[F ]

)
=

∑

F։F1։F2։···։Fn

dFB1,B2,...,Bn+1
[Bn+1] ⊗ [Bn] ⊗ · · · ⊗ [B1],

where Bn+1 = Fn, Bi = ker(Fi−1 −→ Fi) and

(B.6) dFB1,B2,...,Bn+1
= PFF1,B1

PF1

F2,B2
. . . P

Fn−1

Fn,Bn

v−
P

n
i=1〈Fi,Bi〉

aF
.

Definition B.1. For α ∈ (Z2)+ define an operator T : HX [α] −→ ĤX [α] by the
following formulas:
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(1) T
(
[0]

)
= T (1) = 1.

(2) Let α 6= (0, 0) and F be a coherent sheaf of class α. Then

(B.7) T
(
[F ]

)
= −[F ] +

∞∑

n=1

(−1)n
∑

Fn

6=
···

6=
F1

6=
F

cFA1,A2,...,An+1
[An+1]⊗ · · · ⊗ [A1],

where A1,A2, . . . ,An+1 and cFA1,A2,...,An+1
are the same as in (B.5).

In order to see that the operator T is well-defined we introduce one more definition:

Definition B.2. We call two coherent sheaves F and G of the same rank and
degree swept-equivalent, if there exist two filtrations 0 = Fn+1 ⊂ Fn ⊂ Fn−1 ⊂
· · · ⊂ F1 ⊂ F0 = F and 0 = Gn+1 ⊂ Gn ⊂ Gn−1 ⊂ · · · ⊂ G1 ⊂ G0 = G with
quotients Ki := Fi−1/Fi

∼= Gn−i+1/Gn−i+2, 1 ≤ i ≤ n+ 1. Two such filtrations are
called admissible filtrations associated to the swept-equivalent pair (F ,G).

Lemma B.3. For given two coherent sheaves F and G
• there are finitely many swept-equivalent pairs of coherent sheaves (F ′,G′) such

that F ′  F and G ։ G′.
• If F and G are themselves swept-equivalent, then there exist only finitely many

admissible filtrations associated with (F ,G).

Proof. Let us first deal with the second part. Denote by τ(H) the torsion part of the
sheaf H. We argue by induction on the pair

(
rank(G), deg(τ(F))

)
, where the order

is lexicographic. The Lemma is obvious if rank(G) = 0. Now we fix F ,G ∈ Coh(X)
and assume we have an admissible filtration associated with the pair (F ,G) and
having the quotients K1, K2, . . . ,Kn+1.

Note that Kn+1 is both a subsheaf of F and a quotient of G. Hence there are
only finitely many possibilities for Kn+1, and for each such Kn+1, only finitely many
embeddings φ : Kn+1  F and quotients ψ : G ։ Kn+1. For fixed φ and ψ there is
a bijection between admissible filtrations of (F ,G) with quotients K1, . . . ,Kn+1

and admissible filtrations of (coker(φ), ker(ψ)) with quotients K1, . . . ,Kn. But(
rank(ker(ψ)), deg(τ(coker(φ)))

)
<

(
rank(G), deg(τ(F))

)
, so the induction hypoth-

esis allows us to conclude.
To prove the first part note that there is a bijection between the sequences

of inclusions 0 = H′n+1  H′n  H′n−1  · · ·  H′0 = H and sequences of
projections H = H′′0 ։ H′′1 ։ . . .H′′n ։ H′′n+1 = 0 such that coker(H′i+1  H′i) ∼=
ker(H′′n−i ։ H′′n−i+1) (we can simply put H′′i := H/H′n−i+1).

Therefore, existence of a swept-equivalent pair (F ′,G′), where F ′  F , G ։ G′
is equivalent to existence of a sequence of inclusions 0  F ′n  · · ·  F ′1  F ′0 =
F ′  F and a sequence of surjections G ։ G′ = G′0 ։ G′1 ։ · · · ։ G′n ։ 0 such
that coker(F ′i+1 −→ F ′i) ∼= ker(G′i −→ G′i+1). But obviously, such sequences stand

in a bijection with sequences associated with the pair
(
F/F ′n, ker(G −→ G′n)

)
. This

implies the first part. The lemma is proved. X

From this lemma it follows that the operator T : HX [α] −→ ĤX [α] is well-
defined, i.e. the series (B.7) for T

(
[F ]

)
is convergent. Indeed, for any coherent

sheaf G of class α there exist only finitely many admissible filtrations associated
with (F ,G), what means that each term [G] ∈ HX [α] appears the expansion of
T

(
[F ]

)
finitely many times.

For α ∈ (Z2)+ and let ∆n
∗ be the composition of ∆n and the canonical projection

∏

α1+···+αn=α
αi∈(Z2)+

HX [α1]⊗̂ . . . ⊗̂HX [αn] −→
∏

α1+···+αn=α
αi∈(Z2)+,αi 6=0

HX [α1]⊗̂ . . . ⊗̂HX [αn]
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then we denote

∆∗(a) =
∑

a
(1)
i
6=0,··· ,a

(l+1)
i

6=0

a
(1)
i ⊗ a

(2)
i ⊗ · · · ⊗ a

(n)
i .

Using this notations, we may write the operator T : HX [α] −→ ĤX [α]:

T (a) =


−a+

∞∑

l=1

(−1)l
∑

a
(1)
i
6=0,··· ,a

(l+1)
i

6=0

a
(l+1)
i · · ·a(1)

i


 .

Note that in the case of the Hall algebra of the category of representations of a
finite quiver the map T is the inverse of the antipode.

Lemma B.4. Let F be a coherent sheaf and ∆
(
[F ]

)
=

∑
i F

(1)
i ⊗F (2)

i ∈ HX⊗̂HX .

Then we have
∑

i[F
(2)
i ]T

(
[F (1)

i ]
)

= ε
(
[F ]

)
1 and

∑
i T

(
[F (2)

i ]
)
[F (1)

i ] = ε
(
[F ]

)
1,

where both equalities are taken in ĤX .

Proof. We shall prove, following Theorem 1.6.3 in [K1] only the first statement, the
proof of the second is dual. Since the assertion trivially holds for F = 0, assume we
have a coherent sheaf F of class α 6= 0. First of all let us check the convergence of

the series
∑

i[F
(2)
i ]T

(
[F (1)

i ]
)

in ĤX [α]. It is clear that each [G] ∈ HX [α] gets non-

zero contributions only from finitely many summands [F (2)
i ]T

(
[F (1)

i ]
)
. Indeed, by

Lemma B.3 there are only finitely many exact sequences 0 → F (2)
i → F → F (1)

i → 0

and 0 → G′ → G → F (2)
i → 0 such that G′ and F (1)

i are swept-equivalent. Now
note that

∑

i

[F (2)
i ]T

(
[F (1)

i ]
)

=

∞∑

n=1

(−1)n
∑

F
ϕ1
։F1

ϕ2
։F2։···

ϕn
։Fn

dFB1,...,Bn+1
[Bn+1] ⊗ · · · ⊗ [B1],

where Bn+1 = Fn, Bi = ker(Fi−1
ϕi−→ Fi) and the sum is taken in such a way that

the epimorphisms ϕ2, . . . ϕn are strict and ϕ1 is arbitrary. Now note that each term
[Bn+1] ⊗ · · · ⊗ [B1] occurs exactly twice in the sum with two different signs: one

comes from the sequence F ϕ1

։ F1

ϕ2

։ F2 ։ · · · ϕn

։ Fn where all epimorphisms ϕi

are strict and the second comes from F id−→ F ϕ1

։ F1

ϕ2

։ F2 ։ · · · ϕn

։ Fn. This
shows the lemma. X

Lemma B.5. Let α, β ∈ (Z2)+, a ∈ HX [α] and b ∈ HX [β]. Then we have

T (ab) = T (b)T (a) in ĤX [α+ β].

Proof. Let ∆2(a) =
∑

i a
(1)
i ⊗a(2)

i ⊗a(3)
i and ∆2(b) =

∑
j b

(1)
j ⊗ b(2)j ⊗ b(3)j . Consider

an expression

c =
∑

i,j

T
(
b
(3)
j

)
T (a

(3)
i )a

(2)
i b

(2)
j T

(
a
(1)
i b

(1)
j

)

in ĤX [α + β]. To see that this sum converges, assume that both a and b are
classes of coherent sheaves. A coherent sheaf F of class α + β enters in the sum

c if and only if there is a filtration 0  F4

ϕ3

 F3

ϕ2

 F2

ϕ1

 F1

ϕ0

 F0 = F such

that coker(ϕ0) is swept-equivalent to b
(3)
j , coker(ϕ1) is swept-equivalent to a

(3)
i ,

coker(ϕ2) is isomorphic to a
(2)
i , coker(ϕ3) is isomorphic to b

(2)
j and finally F4 is

swept-equivalent to a
(1)
i b

(1)
j .
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Since b
(3)
j is a subsheaf of b and is swept-equivalent to coker(ϕ0), by Lemma B.3

there are finitely many choices for b
(3)
j and ϕ0, and therefore finitely many con-

tributions of T (b
(3)
j ) to F . Assuming that b

(3)
j and F1

ϕ0

 F are fixed, by the

same argument we see that there are finitely many subobjects a
(3)
i of a and finitely

many inclusions F2

ϕ1

 F1 such that a
(3)
i and coker(ϕ1) are swept-equivalent. Next,

there are finitely many inclusions F3

ϕ2

 F2 such that there is a subobject a
(2)
i

of a/a
(3)
i isomorphic to coker(ϕ2). In the same way, we have only finitely many

inclusions F4

ϕ3

 F3 such that coker(ϕ3) is isomorphic to a subobject of b/b
(3)
j . But

choices of a
(2)
i and a

(3)
i also determine a

(1)
i , the same holds for b

(2)
j and b

(3)
j , hence

there are finitely many subobjects of F4 swept-equivalent to some summand of

a
(1)
i b

(1)
j . Gathering all together we conclude, that the element c is correctly defined

in ĤX [α+ β].
Using Lemma B.4 we can transform the series c in two different ways. From the

one side we have

c =
∑

j

T (b
(3)
j )ε(a

(2)
i )b

(2)
j T (a

(1)
i b

(1)
j ) =

∑

j

T (b
(3)
j )b

(2)
j T (ab

(1)
j )

=
∑

j

ε(b
(2)
j )T (ab

(1)
j ) = T (ab)

and from another side,

c =
∑

i,j,k,l

T (b
(2)
j )T (a

(2)
i )(a

(1)
i )

(2)
l (b

(1)
j )

(2)
k T

(
(a

(1)
i )

(1)
l (b

(1)
j )

(1)
k )

=
∑

i,j,k

T (b
(2)
j )T (a

(2)
i )(a

(1)
i b

(1)
j )

(2)
k T

(
(a

(1)
i b

(1)
j )

(1)
k

)

=
∑

i,j

T (b
(2)
j )T (a

(2)
i )ε(a

(1)
i b

(1)
j ) = T (b)T (a).

X

Lemma B.6. Let a ∈ H−X and b ∈ H+
X , then the following equation holds in the

Drinfeld double DHX :

(B.8) ab =
∑

i,j

(
a
(1)
i , b

(3)
j

)
b
(2)
j a

(2)
i

(
T (a

(3)
i ), b

(1)
j

)
.

Proof. First of all note, that the right-hand side of the equation (B.8) is finite by
Lemma B.3. The relation R(a, b) in the Drinfeld double implies

ab = −
∑

i,j

a
(2)
i

6=0

a
(1)
i b

(2)
j

(
a
(2)
i , b

(1)
j

)
+

∑

i,j

b
(1)
j a

(2)
i

(
a
(1)
i , b

(2)
j

)
.

Now use this equality to rewrite each term a
(1)
i b

(2)
j :

a
(1)
i b

(2)
j = −

∑

k,l

(a
(2)
i

)
(2)
k

6=0

(a
(1)
i )

(1)
k (b

(2)
j )

(2)
l

(
(a

(1)
i )

(2)
k , (b

(2)
j )

(1)
l

)
+

+
∑

k,l

(b
(2)
j )

(1)
l (a

(1)
i )

(2)
k

(
(a

(1)
i )

(1)
k , (b

(2)
j )

(2)
l

)
.
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Combining these two equations we obtain

ab =
∑

i,j

a
(3)
i

6=0,a
(2)
i

6=0

a
(1)
i b

(3)
j (a

(2)
i , b

(2)
j )(a

(3)
i , b

(1)
j )−

∑

i,j

a
(3)
i

6=0

b
(2)
j a

(2)
i (a

(1)
i , b

(3)
j )(a

(3)
i , b

(1)
j )+

+
∑

i,j

b
(1)
j a

(2)
i (a

(1)
i , b

(2)
j ).

But note that
∑

i,j

a
(3)
i

6=0,a
(2)
i

6=0

a
(1)
i b

(3)
j (a

(2)
i , b

(2)
j )(a

(3)
i , b

(1)
j ) =

∑

i,j

a
(3)
i

6=0,a
(2)
i

6=0

a
(1)
i b

(2)
j (a

(3)
i a

(2)
i , b

(1)
j ).

Moreover, we have
∑

i,j

b
(1)
j a

(2)
i (a

(1)
i , b

(2)
j ) =

∑

i,j

a
(3)
i

=0

(a
(1)
i , b

(3)
j )b

(2)
j a

(2)
i (a

(3)
i , b

(1)
j ).

Summing everything up, we get

ab =
∑

i,j

a
(3)
i

=0

(a
(1)
i , b

(3)
j )b

(2)
j a

(2)
i (a

(3)
i , b

(1)
j )−

∑

i,j

a
(3)
i

6=0

b
(2)
j a

(2)
i (a

(1)
i , b

(3)
j )(a

(3)
i , b

(1)
j )+

+
∑

i,j

a
(3)
i

6=0,a
(2)
i

6=0

a
(1)
i b

(2)
j (a

(3)
i a

(2)
i , b

(1)
j ).

Iterating this procedure, we get, for each k > 0,

ab =
∑

i,j

(a
(1)
i , b

(3)
j )b

(2)
j a

(2)
i

(
T k(a

(3)
i ), b

(1)
j

)
+

+ (−1)k
∑

i,j

a
(2)
i

6=0,...,a
(k+1)
i

6=0

a
(1)
i b

(2)
j (a

(k+1)
i · · · a(2)

i , b
(1)
j ),(B.9)

where

Tk(a) =


−a+

k−2∑

l=1

(−1)l
∑

a
(1)
i
6=0,··· ,a

(l+1)
i

6=0

a
(l+1)
i · · · a(1)

i


 .

It follows from the first part of Lemma B.3 that the second term in (B.9) vanishes
for k ≫ 0 and the operators T k converge pointwise as k → ∞ to operators T :

HX [α] → ĤX [α] yielding the equation (B.8) as wanted. X

This lemma shows that the map H+
X ⊗ H−X

m−→ DHX is surjective. Next, we

define an associative algebra structure on H+
X ⊗ H−X by setting

(a⊗ a′) · (b ⊗ b′) = (m⊗m)(a⊗ L(a′, b) ⊗ b′),

where

L(x, y) =
∑

i,j

(
x

(i)
1 , y

(3)
j

)
y
(2)
j x

(2)
i

(
T (x

(3)
i ), y

(1)
j

)
.

A proof of associativity of this product is based on Proposition 2.2, Remark 2.5 and
Lemma B.5 and can be shown along the same lines as in in [J, 3.2.4] using similar
calculations as in the proof of Lemma B.6.

Now we can construct the inverse map n : DHX −→ H+
X ⊗ H−X by putting

n(a) = 1 ⊗ a, n(b) = b ⊗ 1 for a ∈ H−X ⊂ DHX and b ∈ H+
X ⊂ DHX . To see that
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we get a well-defined map we need to check that all relations R(a, b) are preserved
in the Drinfeld double. But indeed,

∑

i,j

a
(1)
i b

(2)
j (a

(2)
i , b

(1)
j ) =

∑

i,j

(a
(1)
i , b

(4)
j )a

(2)
i b

(3)
j

(
T (a

(3)
i ), b

(2)
j

)
(a

(4)
i , b

(1)
j ) =

∑

i,j

(a
(1)
i , b

(3)
j )a

(2)
i b

(2)
j

(
T (a

(3)
i )a

(4)
i , b

(1)
j

)
=

∑

i,j

(a
(1)
i , b

(3)
j )a

(2)
i b

(2)
j

(
ε(a

(3)
i )1, b

(1)
j

)
=

=
∑

i,j

(a
(1)
i , b

(2)
j )a

(2)
i b

(1)
j .

This concludes the proof of injectivity and surjectivity of the linear map
m : H+

X ⊗ H−X −→ DHX . Proposition 3.4 is proven. X
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